ring/digest.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597
// Copyright 2015-2019 Brian Smith.
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHORS DISCLAIM ALL WARRANTIES
// WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY
// SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
// WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION
// OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
// CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
//! SHA-2 and the legacy SHA-1 digest algorithm.
//!
//! If all the data is available in a single contiguous slice then the `digest`
//! function should be used. Otherwise, the digest can be calculated in
//! multiple steps using `Context`.
// Note on why are we doing things the hard way: It would be easy to implement
// this using the C `EVP_MD`/`EVP_MD_CTX` interface. However, if we were to do
// things that way, we'd have a hard dependency on `malloc` and other overhead.
// The goal for this implementation is to drive the overhead as close to zero
// as possible.
use crate::{c, cpu, debug, polyfill};
use core::num::Wrapping;
mod sha1;
mod sha2;
#[derive(Clone)]
pub(crate) struct BlockContext {
state: State,
// Note that SHA-512 has a 128-bit input bit counter, but this
// implementation only supports up to 2^64-1 input bits for all algorithms,
// so a 64-bit counter is more than sufficient.
completed_data_blocks: u64,
/// The context's algorithm.
pub algorithm: &'static Algorithm,
}
impl BlockContext {
pub(crate) fn new(algorithm: &'static Algorithm) -> Self {
Self {
state: algorithm.initial_state,
completed_data_blocks: 0,
algorithm,
}
}
#[inline]
pub(crate) fn update(&mut self, input: &[u8]) {
let num_blocks = input.len() / self.algorithm.block_len;
assert_eq!(num_blocks * self.algorithm.block_len, input.len());
if num_blocks > 0 {
unsafe {
self.block_data_order(input.as_ptr(), num_blocks, cpu::features());
}
self.completed_data_blocks = self
.completed_data_blocks
.checked_add(polyfill::u64_from_usize(num_blocks))
.unwrap();
}
}
pub(crate) fn finish(mut self, pending: &mut [u8], num_pending: usize) -> Digest {
let block_len = self.algorithm.block_len;
assert_eq!(pending.len(), block_len);
assert!(num_pending <= pending.len());
let mut padding_pos = num_pending;
pending[padding_pos] = 0x80;
padding_pos += 1;
if padding_pos > block_len - self.algorithm.len_len {
pending[padding_pos..block_len].fill(0);
unsafe { self.block_data_order(pending.as_ptr(), 1, cpu::features()) };
// We don't increase |self.completed_data_blocks| because the
// padding isn't data, and so it isn't included in the data length.
padding_pos = 0;
}
pending[padding_pos..(block_len - 8)].fill(0);
// Output the length, in bits, in big endian order.
let completed_data_bits = self
.completed_data_blocks
.checked_mul(polyfill::u64_from_usize(block_len))
.unwrap()
.checked_add(polyfill::u64_from_usize(num_pending))
.unwrap()
.checked_mul(8)
.unwrap();
pending[(block_len - 8)..block_len].copy_from_slice(&u64::to_be_bytes(completed_data_bits));
unsafe { self.block_data_order(pending.as_ptr(), 1, cpu::features()) };
Digest {
algorithm: self.algorithm,
value: (self.algorithm.format_output)(self.state),
}
}
unsafe fn block_data_order(
&mut self,
pending: *const u8,
num_blocks: usize,
_cpu_features: cpu::Features,
) {
// CPU features are inspected by assembly implementations.
unsafe {
(self.algorithm.block_data_order)(&mut self.state, pending, num_blocks);
}
}
}
/// A context for multi-step (Init-Update-Finish) digest calculations.
///
/// # Examples
///
/// ```
/// use ring::digest;
///
/// let one_shot = digest::digest(&digest::SHA384, b"hello, world");
///
/// let mut ctx = digest::Context::new(&digest::SHA384);
/// ctx.update(b"hello");
/// ctx.update(b", ");
/// ctx.update(b"world");
/// let multi_part = ctx.finish();
///
/// assert_eq!(&one_shot.as_ref(), &multi_part.as_ref());
/// ```
#[derive(Clone)]
pub struct Context {
block: BlockContext,
// TODO: More explicitly force 64-bit alignment for |pending|.
pending: [u8; MAX_BLOCK_LEN],
num_pending: usize,
}
impl Context {
/// Constructs a new context.
pub fn new(algorithm: &'static Algorithm) -> Self {
Self {
block: BlockContext::new(algorithm),
pending: [0u8; MAX_BLOCK_LEN],
num_pending: 0,
}
}
pub(crate) fn clone_from(block: &BlockContext) -> Self {
Self {
block: block.clone(),
pending: [0u8; MAX_BLOCK_LEN],
num_pending: 0,
}
}
/// Updates the digest with all the data in `data`.
pub fn update(&mut self, data: &[u8]) {
let block_len = self.block.algorithm.block_len;
if data.len() < block_len - self.num_pending {
self.pending[self.num_pending..(self.num_pending + data.len())].copy_from_slice(data);
self.num_pending += data.len();
return;
}
let mut remaining = data;
if self.num_pending > 0 {
let to_copy = block_len - self.num_pending;
self.pending[self.num_pending..block_len].copy_from_slice(&data[..to_copy]);
self.block.update(&self.pending[..block_len]);
remaining = &remaining[to_copy..];
self.num_pending = 0;
}
let num_blocks = remaining.len() / block_len;
let num_to_save_for_later = remaining.len() % block_len;
self.block.update(&remaining[..(num_blocks * block_len)]);
if num_to_save_for_later > 0 {
self.pending[..num_to_save_for_later]
.copy_from_slice(&remaining[(remaining.len() - num_to_save_for_later)..]);
self.num_pending = num_to_save_for_later;
}
}
/// Finalizes the digest calculation and returns the digest value.
///
/// `finish` consumes the context so it cannot be (mis-)used after `finish`
/// has been called.
pub fn finish(mut self) -> Digest {
let block_len = self.block.algorithm.block_len;
self.block
.finish(&mut self.pending[..block_len], self.num_pending)
}
/// The algorithm that this context is using.
#[inline(always)]
pub fn algorithm(&self) -> &'static Algorithm {
self.block.algorithm
}
}
/// Returns the digest of `data` using the given digest algorithm.
///
/// # Examples:
///
/// ```
/// # #[cfg(feature = "alloc")]
/// # {
/// use ring::{digest, test};
/// let expected_hex = "09ca7e4eaa6e8ae9c7d261167129184883644d07dfba7cbfbc4c8a2e08360d5b";
/// let expected: Vec<u8> = test::from_hex(expected_hex).unwrap();
/// let actual = digest::digest(&digest::SHA256, b"hello, world");
///
/// assert_eq!(&expected, &actual.as_ref());
/// # }
/// ```
pub fn digest(algorithm: &'static Algorithm, data: &[u8]) -> Digest {
let mut ctx = Context::new(algorithm);
ctx.update(data);
ctx.finish()
}
/// A calculated digest value.
///
/// Use [`Self::as_ref`] to get the value as a `&[u8]`.
#[derive(Clone, Copy)]
pub struct Digest {
value: Output,
algorithm: &'static Algorithm,
}
impl Digest {
/// The algorithm that was used to calculate the digest value.
#[inline(always)]
pub fn algorithm(&self) -> &'static Algorithm {
self.algorithm
}
}
impl AsRef<[u8]> for Digest {
#[inline(always)]
fn as_ref(&self) -> &[u8] {
&self.value.0[..self.algorithm.output_len]
}
}
impl core::fmt::Debug for Digest {
fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
write!(fmt, "{:?}:", self.algorithm)?;
debug::write_hex_bytes(fmt, self.as_ref())
}
}
/// A digest algorithm.
pub struct Algorithm {
output_len: usize,
chaining_len: usize,
block_len: usize,
/// The length of the length in the padding.
len_len: usize,
block_data_order: unsafe extern "C" fn(state: &mut State, data: *const u8, num: c::size_t),
format_output: fn(input: State) -> Output,
initial_state: State,
id: AlgorithmID,
}
#[derive(Debug, Eq, PartialEq)]
enum AlgorithmID {
SHA1,
SHA256,
SHA384,
SHA512,
SHA512_256,
}
impl PartialEq for Algorithm {
fn eq(&self, other: &Self) -> bool {
self.id == other.id
}
}
impl Eq for Algorithm {}
derive_debug_via_id!(Algorithm);
impl Algorithm {
/// The internal block length.
pub fn block_len(&self) -> usize {
self.block_len
}
/// The size of the chaining value of the digest function, in bytes.
///
/// For non-truncated algorithms (SHA-1, SHA-256, SHA-512), this is equal
/// to [`Self::output_len()`]. For truncated algorithms (e.g. SHA-384,
/// SHA-512/256), this is equal to the length before truncation. This is
/// mostly helpful for determining the size of an HMAC key that is
/// appropriate for the digest algorithm.
pub fn chaining_len(&self) -> usize {
self.chaining_len
}
/// The length of a finalized digest.
pub fn output_len(&self) -> usize {
self.output_len
}
}
/// SHA-1 as specified in [FIPS 180-4]. Deprecated.
///
/// [FIPS 180-4]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
pub static SHA1_FOR_LEGACY_USE_ONLY: Algorithm = Algorithm {
output_len: sha1::OUTPUT_LEN,
chaining_len: sha1::CHAINING_LEN,
block_len: sha1::BLOCK_LEN,
len_len: 64 / 8,
block_data_order: sha1::block_data_order,
format_output: sha256_format_output,
initial_state: State {
as32: [
Wrapping(0x67452301u32),
Wrapping(0xefcdab89u32),
Wrapping(0x98badcfeu32),
Wrapping(0x10325476u32),
Wrapping(0xc3d2e1f0u32),
Wrapping(0),
Wrapping(0),
Wrapping(0),
],
},
id: AlgorithmID::SHA1,
};
/// SHA-256 as specified in [FIPS 180-4].
///
/// [FIPS 180-4]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
pub static SHA256: Algorithm = Algorithm {
output_len: SHA256_OUTPUT_LEN,
chaining_len: SHA256_OUTPUT_LEN,
block_len: 512 / 8,
len_len: 64 / 8,
block_data_order: sha2::sha256_block_data_order,
format_output: sha256_format_output,
initial_state: State {
as32: [
Wrapping(0x6a09e667u32),
Wrapping(0xbb67ae85u32),
Wrapping(0x3c6ef372u32),
Wrapping(0xa54ff53au32),
Wrapping(0x510e527fu32),
Wrapping(0x9b05688cu32),
Wrapping(0x1f83d9abu32),
Wrapping(0x5be0cd19u32),
],
},
id: AlgorithmID::SHA256,
};
/// SHA-384 as specified in [FIPS 180-4].
///
/// [FIPS 180-4]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
pub static SHA384: Algorithm = Algorithm {
output_len: SHA384_OUTPUT_LEN,
chaining_len: SHA512_OUTPUT_LEN,
block_len: SHA512_BLOCK_LEN,
len_len: SHA512_LEN_LEN,
block_data_order: sha2::sha512_block_data_order,
format_output: sha512_format_output,
initial_state: State {
as64: [
Wrapping(0xcbbb9d5dc1059ed8),
Wrapping(0x629a292a367cd507),
Wrapping(0x9159015a3070dd17),
Wrapping(0x152fecd8f70e5939),
Wrapping(0x67332667ffc00b31),
Wrapping(0x8eb44a8768581511),
Wrapping(0xdb0c2e0d64f98fa7),
Wrapping(0x47b5481dbefa4fa4),
],
},
id: AlgorithmID::SHA384,
};
/// SHA-512 as specified in [FIPS 180-4].
///
/// [FIPS 180-4]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
pub static SHA512: Algorithm = Algorithm {
output_len: SHA512_OUTPUT_LEN,
chaining_len: SHA512_OUTPUT_LEN,
block_len: SHA512_BLOCK_LEN,
len_len: SHA512_LEN_LEN,
block_data_order: sha2::sha512_block_data_order,
format_output: sha512_format_output,
initial_state: State {
as64: [
Wrapping(0x6a09e667f3bcc908),
Wrapping(0xbb67ae8584caa73b),
Wrapping(0x3c6ef372fe94f82b),
Wrapping(0xa54ff53a5f1d36f1),
Wrapping(0x510e527fade682d1),
Wrapping(0x9b05688c2b3e6c1f),
Wrapping(0x1f83d9abfb41bd6b),
Wrapping(0x5be0cd19137e2179),
],
},
id: AlgorithmID::SHA512,
};
/// SHA-512/256 as specified in [FIPS 180-4].
///
/// This is *not* the same as just truncating the output of SHA-512, as
/// SHA-512/256 has its own initial state distinct from SHA-512's initial
/// state.
///
/// [FIPS 180-4]: http://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
pub static SHA512_256: Algorithm = Algorithm {
output_len: SHA512_256_OUTPUT_LEN,
chaining_len: SHA512_OUTPUT_LEN,
block_len: SHA512_BLOCK_LEN,
len_len: SHA512_LEN_LEN,
block_data_order: sha2::sha512_block_data_order,
format_output: sha512_format_output,
initial_state: State {
as64: [
Wrapping(0x22312194fc2bf72c),
Wrapping(0x9f555fa3c84c64c2),
Wrapping(0x2393b86b6f53b151),
Wrapping(0x963877195940eabd),
Wrapping(0x96283ee2a88effe3),
Wrapping(0xbe5e1e2553863992),
Wrapping(0x2b0199fc2c85b8aa),
Wrapping(0x0eb72ddc81c52ca2),
],
},
id: AlgorithmID::SHA512_256,
};
#[derive(Clone, Copy)] // XXX: Why do we need to be `Copy`?
#[repr(C)]
union State {
as64: [Wrapping<u64>; sha2::CHAINING_WORDS],
as32: [Wrapping<u32>; sha2::CHAINING_WORDS],
}
#[derive(Clone, Copy)]
struct Output([u8; MAX_OUTPUT_LEN]);
/// The maximum block length ([`Algorithm::block_len()`]) of all the algorithms
/// in this module.
pub const MAX_BLOCK_LEN: usize = 1024 / 8;
/// The maximum output length ([`Algorithm::output_len()`]) of all the
/// algorithms in this module.
pub const MAX_OUTPUT_LEN: usize = 512 / 8;
/// The maximum chaining length ([`Algorithm::chaining_len()`]) of all the
/// algorithms in this module.
pub const MAX_CHAINING_LEN: usize = MAX_OUTPUT_LEN;
fn sha256_format_output(input: State) -> Output {
let input = unsafe { input.as32 };
format_output::<_, _, { core::mem::size_of::<u32>() }>(input, u32::to_be_bytes)
}
fn sha512_format_output(input: State) -> Output {
let input = unsafe { input.as64 };
format_output::<_, _, { core::mem::size_of::<u64>() }>(input, u64::to_be_bytes)
}
#[inline]
fn format_output<T, F, const N: usize>(input: [Wrapping<T>; sha2::CHAINING_WORDS], f: F) -> Output
where
F: Fn(T) -> [u8; N],
T: Copy,
{
let mut output = Output([0; MAX_OUTPUT_LEN]);
output
.0
.chunks_mut(N)
.zip(input.iter().copied().map(|Wrapping(w)| f(w)))
.for_each(|(o, i)| {
o.copy_from_slice(&i);
});
output
}
/// The length of the output of SHA-1, in bytes.
pub const SHA1_OUTPUT_LEN: usize = sha1::OUTPUT_LEN;
/// The length of the output of SHA-256, in bytes.
pub const SHA256_OUTPUT_LEN: usize = 256 / 8;
/// The length of the output of SHA-384, in bytes.
pub const SHA384_OUTPUT_LEN: usize = 384 / 8;
/// The length of the output of SHA-512, in bytes.
pub const SHA512_OUTPUT_LEN: usize = 512 / 8;
/// The length of the output of SHA-512/256, in bytes.
pub const SHA512_256_OUTPUT_LEN: usize = 256 / 8;
/// The length of a block for SHA-512-based algorithms, in bytes.
const SHA512_BLOCK_LEN: usize = 1024 / 8;
/// The length of the length field for SHA-512-based algorithms, in bytes.
const SHA512_LEN_LEN: usize = 128 / 8;
#[cfg(test)]
mod tests {
mod max_input {
extern crate alloc;
use super::super::super::digest;
use crate::polyfill;
use alloc::vec;
macro_rules! max_input_tests {
( $algorithm_name:ident ) => {
mod $algorithm_name {
use super::super::super::super::digest;
#[test]
fn max_input_test() {
super::max_input_test(&digest::$algorithm_name);
}
#[test]
#[should_panic]
fn too_long_input_test_block() {
super::too_long_input_test_block(&digest::$algorithm_name);
}
#[test]
#[should_panic]
fn too_long_input_test_byte() {
super::too_long_input_test_byte(&digest::$algorithm_name);
}
}
};
}
fn max_input_test(alg: &'static digest::Algorithm) {
let mut context = nearly_full_context(alg);
let next_input = vec![0u8; alg.block_len - 1];
context.update(&next_input);
let _ = context.finish(); // no panic
}
fn too_long_input_test_block(alg: &'static digest::Algorithm) {
let mut context = nearly_full_context(alg);
let next_input = vec![0u8; alg.block_len];
context.update(&next_input);
let _ = context.finish(); // should panic
}
fn too_long_input_test_byte(alg: &'static digest::Algorithm) {
let mut context = nearly_full_context(alg);
let next_input = vec![0u8; alg.block_len - 1];
context.update(&next_input); // no panic
context.update(&[0]);
let _ = context.finish(); // should panic
}
fn nearly_full_context(alg: &'static digest::Algorithm) -> digest::Context {
// All implementations currently support up to 2^64-1 bits
// of input; according to the spec, SHA-384 and SHA-512
// support up to 2^128-1, but that's not implemented yet.
let max_bytes = 1u64 << (64 - 3);
let max_blocks = max_bytes / polyfill::u64_from_usize(alg.block_len);
digest::Context {
block: digest::BlockContext {
state: alg.initial_state,
completed_data_blocks: max_blocks - 1,
algorithm: alg,
},
pending: [0u8; digest::MAX_BLOCK_LEN],
num_pending: 0,
}
}
max_input_tests!(SHA1_FOR_LEGACY_USE_ONLY);
max_input_tests!(SHA256);
max_input_tests!(SHA384);
max_input_tests!(SHA512);
}
}