bitvec/
index.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
#![doc = include_str!("../doc/index.md")]

use core::{
	any,
	fmt::{
		self,
		Binary,
		Debug,
		Display,
		Formatter,
	},
	iter::{
		FusedIterator,
		Sum,
	},
	marker::PhantomData,
	ops::{
		BitAnd,
		BitOr,
		Not,
	},
};

use crate::{
	mem::{
		bits_of,
		BitRegister,
	},
	order::BitOrder,
};

#[repr(transparent)]
#[doc = include_str!("../doc/index/BitIdx.md")]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitIdx<R = usize>
where R: BitRegister
{
	/// Semantic index counter within a register, constrained to `0 .. R::BITS`.
	idx: u8,
	/// Marker for the register type.
	_ty: PhantomData<R>,
}

impl<R> BitIdx<R>
where R: BitRegister
{
	/// The inclusive maximum index within an `R` element.
	pub const MAX: Self = Self {
		idx: R::MASK,
		_ty: PhantomData,
	};
	/// The inclusive minimum index within an `R` element.
	pub const MIN: Self = Self {
		idx: 0,
		_ty: PhantomData,
	};

	/// Wraps a counter value as a known-good index into an `R` register.
	///
	/// ## Parameters
	///
	/// - `idx`: The counter value to mark as an index. This must be in the
	///   range `0 .. R::BITS`.
	///
	/// ## Returns
	///
	/// This returns `idx`, either marked as a valid `BitIdx` or an invalid
	/// `BitIdxError` by whether it is within the valid range `0 .. R::BITS`.
	#[inline]
	pub fn new(idx: u8) -> Result<Self, BitIdxError<R>> {
		if idx >= bits_of::<R>() as u8 {
			return Err(BitIdxError::new(idx));
		}
		Ok(unsafe { Self::new_unchecked(idx) })
	}

	/// Wraps a counter value as an assumed-good index into an `R` register.
	///
	/// ## Parameters
	///
	/// - `idx`: The counter value to mark as an index. This must be in the
	///   range `0 .. R::BITS`.
	///
	/// ## Returns
	///
	/// This unconditionally marks `idx` as a valid bit-index.
	///
	/// ## Safety
	///
	/// If the `idx` value is outside the valid range, then the program is
	/// incorrect. Debug builds will panic; release builds do not inspect the
	/// value or specify a behavior.
	#[inline]
	pub unsafe fn new_unchecked(idx: u8) -> Self {
		debug_assert!(
			idx < bits_of::<R>() as u8,
			"Bit index {} cannot exceed type width {}",
			idx,
			bits_of::<R>(),
		);
		Self {
			idx,
			_ty: PhantomData,
		}
	}

	/// Removes the index wrapper, leaving the internal counter.
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub fn into_inner(self) -> u8 {
		self.idx
	}

	/// Increments an index counter, wrapping at the back edge of the register.
	///
	/// ## Parameters
	///
	/// - `self`: The index to increment.
	///
	/// ## Returns
	///
	/// - `.0`: The next index after `self`.
	/// - `.1`: Indicates whether the new index is in the next memory address.
	#[inline]
	pub fn next(self) -> (Self, bool) {
		let next = self.idx + 1;
		(
			unsafe { Self::new_unchecked(next & R::MASK) },
			next == bits_of::<R>() as u8,
		)
	}

	/// Decrements an index counter, wrapping at the front edge of the register.
	///
	/// ## Parameters
	///
	/// - `self`: The index to decrement.
	///
	/// ## Returns
	///
	/// - `.0`: The previous index before `self`.
	/// - `.1`: Indicates whether the new index is in the previous memory
	///   address.
	#[inline]
	pub fn prev(self) -> (Self, bool) {
		let prev = self.idx.wrapping_sub(1);
		(
			unsafe { Self::new_unchecked(prev & R::MASK) },
			self.idx == 0,
		)
	}

	/// Computes the bit position corresponding to `self` under some ordering.
	///
	/// This forwards to [`O::at::<R>`], which is the only public, safe,
	/// constructor for a position counter.
	///
	/// [`O::at::<R>`]: crate::order::BitOrder::at
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub fn position<O>(self) -> BitPos<R>
	where O: BitOrder {
		O::at::<R>(self)
	}

	/// Computes the bit selector corresponding to `self` under an ordering.
	///
	/// This forwards to [`O::select::<R>`], which is the only public, safe,
	/// constructor for a bit selector.
	///
	/// [`O::select::<R>`]: crate::order::BitOrder::select
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub fn select<O>(self) -> BitSel<R>
	where O: BitOrder {
		O::select::<R>(self)
	}

	/// Computes the bit selector for `self` as an accessor mask.
	///
	/// This is a type-cast over [`Self::select`].
	///
	/// [`Self::select`]: Self::select
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub fn mask<O>(self) -> BitMask<R>
	where O: BitOrder {
		self.select::<O>().mask()
	}

	/// Iterates over all indices between an inclusive start and exclusive end
	/// point.
	///
	/// Because implementation details of the range type family, including the
	/// [`RangeBounds`] trait, are not yet stable, and heterogeneous ranges are
	/// not supported, this must be an opaque iterator rather than a direct
	/// [`Range<BitIdx<R>>`].
	///
	/// # Parameters
	///
	/// - `from`: The inclusive low bound of the range. This will be the first
	///   index produced by the iterator.
	/// - `upto`: The exclusive high bound of the range. The iterator will halt
	///   before yielding an index of this value.
	///
	/// # Returns
	///
	/// An opaque iterator that is equivalent to the range `from .. upto`.
	///
	/// # Requirements
	///
	/// `from` must be no greater than `upto`.
	///
	/// [`RangeBounds`]: core::ops::RangeBounds
	/// [`Range<BitIdx<R>>`]: core::ops::Range
	#[inline]
	pub fn range(
		self,
		upto: BitEnd<R>,
	) -> impl Iterator<Item = Self>
	+ DoubleEndedIterator
	+ ExactSizeIterator
	+ FusedIterator {
		let (from, upto) = (self.into_inner(), upto.into_inner());
		debug_assert!(from <= upto, "Ranges must run from low to high");
		(from .. upto).map(|val| unsafe { Self::new_unchecked(val) })
	}

	/// Iterates over all possible index values.
	#[inline]
	pub fn range_all() -> impl Iterator<Item = Self>
	+ DoubleEndedIterator
	+ ExactSizeIterator
	+ FusedIterator {
		BitIdx::MIN.range(BitEnd::MAX)
	}

	/// Computes the jump distance for some number of bits away from a starting
	/// index.
	///
	/// This computes the number of elements by which to adjust a base pointer,
	/// and then the bit index of the destination bit in the new referent
	/// register element.
	///
	/// # Parameters
	///
	/// - `self`: An index within some element, from which the offset is
	///   computed.
	/// - `by`: The distance by which to jump. Negative values move lower in the
	///   index and element-pointer space; positive values move higher.
	///
	/// # Returns
	///
	/// - `.0`: The number of elements `R` by which to adjust a base pointer.
	///   This value can be passed directly into [`ptr::offset`].
	/// - `.1`: The index of the destination bit within the destination element.
	///
	/// [`ptr::offset`]: https://doc.rust-lang.org/stable/std/primitive.pointer.html#method.offset
	pub(crate) fn offset(self, by: isize) -> (isize, Self) {
		/* Signed-add `self.idx` to the jump distance. This will almost
		 * certainly not wrap (as the crate imposes restrictions well below
		 * `isize::MAX`), but correctness never hurts. The resulting sum is a
		 * bit distance that is then broken into an element distance and final
		 * bit index.
		 */
		let far = by.wrapping_add(self.into_inner() as isize);

		let (elts, head) = (far >> R::INDX, far as u8 & R::MASK);

		(elts, unsafe { Self::new_unchecked(head) })
	}

	/// Computes the span information for a region beginning at `self` for `len`
	/// bits.
	///
	/// The span information is the number of elements in the region that hold
	/// live bits, and the position of the tail marker after the live bits.
	///
	/// This forwards to [`BitEnd::span`], as the computation is identical for
	/// the two types. Beginning a span at any `Idx` is equivalent to beginning
	/// it at the tail of a previous span.
	///
	/// # Parameters
	///
	/// - `self`: The start bit of the span.
	/// - `len`: The number of bits in the span.
	///
	/// # Returns
	///
	/// - `.0`: The number of elements, starting in the element that contains
	///   `self`, that contain live bits of the span.
	/// - `.1`: The tail counter of the span’s end point.
	///
	/// [`BitEnd::span`]: crate::index::BitEnd::span
	pub(crate) fn span(self, len: usize) -> (usize, BitEnd<R>) {
		unsafe { BitEnd::<R>::new_unchecked(self.into_inner()) }.span(len)
	}
}

impl<R> Binary for BitIdx<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		write!(fmt, "{:0>1$b}", self.idx, R::INDX as usize)
	}
}

impl<R> Debug for BitIdx<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		write!(fmt, "BitIdx<{}>({})", any::type_name::<R>(), self)
	}
}

impl<R> Display for BitIdx<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		Binary::fmt(self, fmt)
	}
}

#[repr(transparent)]
#[doc = include_str!("../doc/index/BitIdxError.md")]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitIdxError<R = usize>
where R: BitRegister
{
	/// The value that is invalid as a [`BitIdx<R>`].
	///
	/// [`BitIdx<R>`]: crate::index::BitIdx
	err: u8,
	/// Marker for the register type.
	_ty: PhantomData<R>,
}

impl<R> BitIdxError<R>
where R: BitRegister
{
	/// Marks a counter value as invalid to be an index for an `R` register.
	///
	/// ## Parameters
	///
	/// - `err`: The counter value to mark as an error. This must be greater
	///   than `R::BITS`.
	///
	/// ## Returns
	///
	/// This returns `err`, marked as an invalid index for `R`.
	///
	/// ## Panics
	///
	/// Debug builds panic when `err` is a valid index for `R`.
	pub(crate) fn new(err: u8) -> Self {
		debug_assert!(
			err >= bits_of::<R>() as u8,
			"Bit index {} is valid for type width {}",
			err,
			bits_of::<R>(),
		);
		Self {
			err,
			_ty: PhantomData,
		}
	}

	/// Removes the error wrapper, leaving the internal counter.
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub fn into_inner(self) -> u8 {
		self.err
	}
}

impl<R> Debug for BitIdxError<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		write!(fmt, "BitIdxError<{}>({})", any::type_name::<R>(), self.err)
	}
}

#[cfg(not(tarpaulin_include))]
impl<R> Display for BitIdxError<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		write!(
			fmt,
			"the value {} is too large to index into {} ({} bits wide)",
			self.err,
			any::type_name::<R>(),
			bits_of::<R>(),
		)
	}
}

#[cfg(feature = "std")]
impl<R> std::error::Error for BitIdxError<R> where R: BitRegister {}

#[repr(transparent)]
#[doc = include_str!("../doc/index/BitEnd.md")]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitEnd<R = usize>
where R: BitRegister
{
	/// Semantic tail counter within or after a register, contained to `0 ..=
	/// R::BITS`.
	end: u8,
	/// Marker for the register type.
	_ty: PhantomData<R>,
}

impl<R> BitEnd<R>
where R: BitRegister
{
	/// The inclusive maximum tail within (or after) an `R` element.
	pub const MAX: Self = Self {
		end: bits_of::<R>() as u8,
		_ty: PhantomData,
	};
	/// The inclusive minimum tail within (or after) an `R` element.
	pub const MIN: Self = Self {
		end: 0,
		_ty: PhantomData,
	};

	/// Wraps a counter value as a known-good tail of an `R` register.
	///
	/// ## Parameters
	///
	/// - `end`: The counter value to mark as a tail. This must be in the range
	///   `0 ..= R::BITS`.
	///
	/// ## Returns
	///
	/// This returns `Some(end)` when it is in the valid range `0 ..= R::BITS`,
	/// and `None` when it is not.
	#[inline]
	pub fn new(end: u8) -> Option<Self> {
		if end > bits_of::<R>() as u8 {
			return None;
		}
		Some(unsafe { Self::new_unchecked(end) })
	}

	/// Wraps a counter value as an assumed-good tail of an `R` register.
	///
	/// ## Parameters
	///
	/// - `end`: The counter value to mark as a tail. This must be in the range
	///   `0 ..= R::BITS`.
	///
	/// ## Returns
	///
	/// This unconditionally marks `end` as a valid tail index.
	///
	/// ## Safety
	///
	/// If the `end` value is outside the valid range, then the program is
	/// incorrect. Debug builds will panic; release builds do not inspect the
	/// value or specify a behavior.
	pub(crate) unsafe fn new_unchecked(end: u8) -> Self {
		debug_assert!(
			end <= bits_of::<R>() as u8,
			"Bit tail {} cannot exceed type width {}",
			end,
			bits_of::<R>(),
		);
		Self {
			end,
			_ty: PhantomData,
		}
	}

	/// Removes the tail wrapper, leaving the internal counter.
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub fn into_inner(self) -> u8 {
		self.end
	}

	/// Iterates over all tail indices at and after an inclusive starting point.
	///
	/// Because implementation details of the range type family, including the
	/// [`RangeBounds`] trait, are not yet stable, and heterogeneous ranges are
	/// not yet supported, this must be an opaque iterator rather than a direct
	/// [`Range<BitEnd<R>>`].
	///
	/// # Parameters
	///
	/// - `from`: The inclusive low bound of the range. This will be the first
	///   tail produced by the iterator.
	///
	/// # Returns
	///
	/// An opaque iterator that is equivalent to the range `from ..=
	/// Self::MAX`.
	///
	/// [`RangeBounds`]: core::ops::RangeBounds
	/// [`Range<BitEnd<R>>`]: core::ops::Range
	#[inline]
	pub fn range_from(
		from: BitIdx<R>,
	) -> impl Iterator<Item = Self>
	+ DoubleEndedIterator
	+ ExactSizeIterator
	+ FusedIterator {
		(from.idx ..= Self::MAX.end)
			.map(|tail| unsafe { BitEnd::new_unchecked(tail) })
	}

	/// Computes the span information for a region.
	///
	/// The computed span of `len` bits begins at `self` and extends upwards in
	/// memory. The return value is the number of memory elements that contain
	/// bits of the span, and the first dead bit after the span.
	///
	/// ## Parameters
	///
	/// - `self`: A dead bit which is used as the first live bit of the new
	///   span.
	/// - `len`: The number of live bits in the span starting at `self`.
	///
	/// ## Returns
	///
	/// - `.0`: The number of `R` elements that contain live bits in the
	///   computed span.
	/// - `.1`: The dead-bit tail index ending the computed span.
	///
	/// ## Behavior
	///
	/// If `len` is `0`, this returns `(0, self)`, as the span has no live bits.
	/// If `self` is [`BitEnd::MAX`], then the new region starts at
	/// [`BitIdx::MIN`] in the next element.
	///
	/// [`BitEnd::MAX`]: Self::MAX
	/// [`BitIdx::MIN`]: Self::MIN
	pub(crate) fn span(self, len: usize) -> (usize, Self) {
		if len == 0 {
			return (0, self);
		}

		let head = self.end & R::MASK;
		let bits_in_head = (bits_of::<R>() as u8 - head) as usize;

		if len <= bits_in_head {
			return (1, unsafe { Self::new_unchecked(head + len as u8) });
		}

		let bits_after_head = len - bits_in_head;
		let elts = bits_after_head >> R::INDX;
		let tail = bits_after_head as u8 & R::MASK;

		let is_zero = (tail == 0) as u8;
		let edges = 2 - is_zero as usize;
		(elts + edges, unsafe {
			Self::new_unchecked((is_zero << R::INDX) | tail)
		})
	}
}

impl<R> Binary for BitEnd<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		write!(fmt, "{:0>1$b}", self.end, R::INDX as usize + 1)
	}
}

impl<R> Debug for BitEnd<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		write!(fmt, "BitEnd<{}>({})", any::type_name::<R>(), self)
	}
}

impl<R> Display for BitEnd<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		Binary::fmt(self, fmt)
	}
}

#[repr(transparent)]
#[doc = include_str!("../doc/index/BitPos.md")]
// #[rustc_layout_scalar_valid_range_end(R::BITS)]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitPos<R = usize>
where R: BitRegister
{
	/// Electrical position counter within a register, constrained to `0 ..
	/// R::BITS`.
	pos: u8,
	/// Marker for the register type.
	_ty: PhantomData<R>,
}

impl<R> BitPos<R>
where R: BitRegister
{
	/// The position value of the most significant bit in an `R` element.
	pub const MAX: Self = Self {
		pos: R::MASK as u8,
		_ty: PhantomData,
	};
	/// The position value of the least significant bit in an `R` element.
	pub const MIN: Self = Self {
		pos: 0,
		_ty: PhantomData,
	};

	/// Wraps a counter value as a known-good position within an `R` register.
	///
	/// ## Parameters
	///
	/// - `pos`: The counter value to mark as a position. This must be in the
	///   range `0 .. R::BITS`.
	///
	/// ## Returns
	///
	/// This returns `Some(pos)` when it is in the valid range `0 .. R::BITS`,
	/// and `None` when it is not.
	#[inline]
	pub fn new(pos: u8) -> Option<Self> {
		if pos >= bits_of::<R>() as u8 {
			return None;
		}
		Some(unsafe { Self::new_unchecked(pos) })
	}

	/// Wraps a counter value as an assumed-good position within an `R`
	/// register.
	///
	/// ## Parameters
	///
	/// - `value`: The counter value to mark as a position. This must be in the
	///   range `0 .. R::BITS`.
	///
	/// ## Returns
	///
	/// This unconditionally marks `pos` as a valid bit-position.
	///
	/// ## Safety
	///
	/// If the `pos` value is outside the valid range, then the program is
	/// incorrect. Debug builds will panic; release builds do not inspect the
	/// value or specify a behavior.
	#[inline]
	pub unsafe fn new_unchecked(pos: u8) -> Self {
		debug_assert!(
			pos < bits_of::<R>() as u8,
			"Bit position {} cannot exceed type width {}",
			pos,
			bits_of::<R>(),
		);
		Self {
			pos,
			_ty: PhantomData,
		}
	}

	/// Removes the position wrapper, leaving the internal counter.
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub fn into_inner(self) -> u8 {
		self.pos
	}

	/// Computes the bit selector corresponding to `self`.
	///
	/// This is always `1 << self.pos`.
	#[inline]
	pub fn select(self) -> BitSel<R> {
		unsafe { BitSel::new_unchecked(R::ONE << self.pos) }
	}

	/// Computes the bit selector for `self` as an accessor mask.
	///
	/// This is a type-cast over [`Self::select`].
	///
	/// [`Self::select`]: Self::select
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub fn mask(self) -> BitMask<R> {
		self.select().mask()
	}

	/// Iterates over all possible position values.
	pub(crate) fn range_all() -> impl Iterator<Item = Self>
	+ DoubleEndedIterator
	+ ExactSizeIterator
	+ FusedIterator {
		BitIdx::<R>::range_all()
			.map(|idx| unsafe { Self::new_unchecked(idx.into_inner()) })
	}
}

impl<R> Binary for BitPos<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		write!(fmt, "{:0>1$b}", self.pos, R::INDX as usize)
	}
}

impl<R> Debug for BitPos<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		write!(fmt, "BitPos<{}>({})", any::type_name::<R>(), self)
	}
}

impl<R> Display for BitPos<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		Binary::fmt(self, fmt)
	}
}

#[repr(transparent)]
#[doc = include_str!("../doc/index/BitSel.md")]
// #[rustc_layout_scalar_valid_range_end(R::BITS)]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitSel<R = usize>
where R: BitRegister
{
	/// A one-hot selection mask.
	sel: R,
}

impl<R> BitSel<R>
where R: BitRegister
{
	/// Wraps a selector value as a known-good selection in an `R` register.
	///
	/// ## Parameters
	///
	/// - `sel`: A one-hot selection mask of a bit in an `R` register.
	///
	/// ## Returns
	///
	/// This returns `Some(sel)` when it is a power of two (exactly one bit set
	/// and all others cleared), and `None` when it is not.
	#[inline]
	pub fn new(sel: R) -> Option<Self> {
		if sel.count_ones() != 1 {
			return None;
		}
		Some(unsafe { Self::new_unchecked(sel) })
	}

	/// Wraps a selector value as an assumed-good selection in an `R` register.
	///
	/// ## Parameters
	///
	/// - `sel`: A one-hot selection mask of a bit in an `R` register.
	///
	/// ## Returns
	///
	/// This unconditionally marks `sel` as a one-hot bit selector.
	///
	/// ## Safety
	///
	/// If the `sel` value has zero or multiple bits set, then it is invalid to
	/// be used as a `BitSel` and the program is incorrect. Debug builds will
	/// panic; release builds do not inspect the value or specify a behavior.
	#[inline]
	pub unsafe fn new_unchecked(sel: R) -> Self {
		debug_assert!(
			sel.count_ones() == 1,
			"Selections are required to have exactly one bit set: {:0>1$b}",
			sel,
			bits_of::<R>() as usize,
		);
		Self { sel }
	}

	/// Removes the one-hot selection wrapper, leaving the internal mask.
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub fn into_inner(self) -> R {
		self.sel
	}

	/// Computes a bit-mask for `self`. This is a type-cast.
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub fn mask(self) -> BitMask<R> {
		BitMask::new(self.sel)
	}

	/// Iterates over all possible selector values.
	#[inline]
	pub fn range_all() -> impl Iterator<Item = Self>
	+ DoubleEndedIterator
	+ ExactSizeIterator
	+ FusedIterator {
		BitPos::<R>::range_all().map(BitPos::select)
	}
}

impl<R> Binary for BitSel<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		write!(fmt, "{:0>1$b}", self.sel, bits_of::<R>() as usize)
	}
}

impl<R> Debug for BitSel<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		write!(fmt, "BitSel<{}>({})", any::type_name::<R>(), self)
	}
}

impl<R> Display for BitSel<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		Binary::fmt(self, fmt)
	}
}

#[repr(transparent)]
#[doc = include_str!("../doc/index/BitMask.md")]
#[derive(Clone, Copy, Default, Eq, Hash, Ord, PartialEq, PartialOrd)]
pub struct BitMask<R = usize>
where R: BitRegister
{
	/// A mask of any number of bits to select.
	mask: R,
}

impl<R> BitMask<R>
where R: BitRegister
{
	/// A full bit-mask with every bit set.
	pub const ALL: Self = Self { mask: R::ALL };
	/// An empty bit-mask with every bit cleared.
	pub const ZERO: Self = Self { mask: R::ZERO };

	/// Wraps any `R` value as a bit-mask.
	///
	/// This constructor is provided to explicitly declare that an operation is
	/// discarding the numeric value of an integer and instead using it only as
	/// a bit-mask.
	///
	/// ## Parameters
	///
	/// - `mask`: Some integer to use as a bit-mask.
	///
	/// ## Returns
	///
	/// The `mask` value wrapped as a bit-mask, with its numeric context
	/// discarded.
	///
	/// Prefer accumulating [`BitSel`] values using its `Sum` implementation.
	///
	/// ## Safety
	///
	/// The `mask` value must be computed from a set of valid bit positions in
	/// the caller’s context.
	///
	/// [`BitSel`]: crate::index::BitSel
	#[inline]
	pub fn new(mask: R) -> Self {
		Self { mask }
	}

	/// Removes the mask wrapper, leaving the internal value.
	#[inline]
	#[cfg(not(tarpaulin_include))]
	pub fn into_inner(self) -> R {
		self.mask
	}

	/// Tests if a mask contains a given selector bit.
	///
	/// ## Parameters
	///
	/// - `&self`: The mask being tested.
	/// - `sel`: A selector bit to test in `self`.
	///
	/// ## Returns
	///
	/// Whether `self` has set the bit that `sel` indicates.
	#[inline]
	pub fn test(&self, sel: BitSel<R>) -> bool {
		self.mask & sel.sel != R::ZERO
	}

	/// Inserts a selector bit into a mask.
	///
	/// ## Parameters
	///
	/// - `&mut self`: The mask being modified.
	/// - `sel`: A selector bit to insert into `self`.
	///
	/// ## Effects
	///
	/// The `sel` bit is set in the mask.
	#[inline]
	pub fn insert(&mut self, sel: BitSel<R>) {
		self.mask |= sel.sel;
	}

	/// Creates a new mask with a selector bit activated.
	///
	/// ## Parameters
	///
	/// - `self`: The original mask.
	/// - `sel`: The selector bit being added into the mask.
	///
	/// ## Returns
	///
	/// A new bit-mask with `sel` activated.
	#[inline]
	pub fn combine(self, sel: BitSel<R>) -> Self {
		Self {
			mask: self.mask | sel.sel,
		}
	}
}

impl<R> Binary for BitMask<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		write!(fmt, "{:0>1$b}", self.mask, bits_of::<R>() as usize)
	}
}

impl<R> Debug for BitMask<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		write!(fmt, "BitMask<{}>({})", any::type_name::<R>(), self)
	}
}

impl<R> Display for BitMask<R>
where R: BitRegister
{
	#[inline]
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		Binary::fmt(self, fmt)
	}
}

impl<R> Sum<BitSel<R>> for BitMask<R>
where R: BitRegister
{
	#[inline]
	fn sum<I>(iter: I) -> Self
	where I: Iterator<Item = BitSel<R>> {
		iter.fold(Self::ZERO, Self::combine)
	}
}

impl<R> BitAnd<R> for BitMask<R>
where R: BitRegister
{
	type Output = Self;

	#[inline]
	fn bitand(self, rhs: R) -> Self::Output {
		Self {
			mask: self.mask & rhs,
		}
	}
}

impl<R> BitOr<R> for BitMask<R>
where R: BitRegister
{
	type Output = Self;

	#[inline]
	fn bitor(self, rhs: R) -> Self::Output {
		Self {
			mask: self.mask | rhs,
		}
	}
}

impl<R> Not for BitMask<R>
where R: BitRegister
{
	type Output = Self;

	#[inline]
	fn not(self) -> Self::Output {
		Self { mask: !self.mask }
	}
}

#[cfg(test)]
mod tests {
	use super::*;
	use crate::order::Lsb0;

	#[test]
	fn index_ctors() {
		for n in 0 .. 8 {
			assert!(BitIdx::<u8>::new(n).is_ok());
		}
		assert!(BitIdx::<u8>::new(8).is_err());

		for n in 0 .. 16 {
			assert!(BitIdx::<u16>::new(n).is_ok());
		}
		assert!(BitIdx::<u16>::new(16).is_err());

		for n in 0 .. 32 {
			assert!(BitIdx::<u32>::new(n).is_ok());
		}
		assert!(BitIdx::<u32>::new(32).is_err());

		#[cfg(target_pointer_width = "64")]
		{
			for n in 0 .. 64 {
				assert!(BitIdx::<u64>::new(n).is_ok());
			}
			assert!(BitIdx::<u64>::new(64).is_err());
		}

		for n in 0 .. bits_of::<usize>() as u8 {
			assert!(BitIdx::<usize>::new(n).is_ok());
		}
		assert!(BitIdx::<usize>::new(bits_of::<usize>() as u8).is_err());
	}

	#[test]
	fn tail_ctors() {
		for n in 0 ..= 8 {
			assert!(BitEnd::<u8>::new(n).is_some());
		}
		assert!(BitEnd::<u8>::new(9).is_none());

		for n in 0 ..= 16 {
			assert!(BitEnd::<u16>::new(n).is_some());
		}
		assert!(BitEnd::<u16>::new(17).is_none());

		for n in 0 ..= 32 {
			assert!(BitEnd::<u32>::new(n).is_some());
		}
		assert!(BitEnd::<u32>::new(33).is_none());

		#[cfg(target_pointer_width = "64")]
		{
			for n in 0 ..= 64 {
				assert!(BitEnd::<u64>::new(n).is_some());
			}
			assert!(BitEnd::<u64>::new(65).is_none());
		}

		for n in 0 ..= bits_of::<usize>() as u8 {
			assert!(BitEnd::<usize>::new(n).is_some());
		}
		assert!(BitEnd::<usize>::new(bits_of::<usize>() as u8 + 1).is_none());
	}

	#[test]
	fn position_ctors() {
		for n in 0 .. 8 {
			assert!(BitPos::<u8>::new(n).is_some());
		}
		assert!(BitPos::<u8>::new(8).is_none());

		for n in 0 .. 16 {
			assert!(BitPos::<u16>::new(n).is_some());
		}
		assert!(BitPos::<u16>::new(16).is_none());

		for n in 0 .. 32 {
			assert!(BitPos::<u32>::new(n).is_some());
		}
		assert!(BitPos::<u32>::new(32).is_none());

		#[cfg(target_pointer_width = "64")]
		{
			for n in 0 .. 64 {
				assert!(BitPos::<u64>::new(n).is_some());
			}
			assert!(BitPos::<u64>::new(64).is_none());
		}

		for n in 0 .. bits_of::<usize>() as u8 {
			assert!(BitPos::<usize>::new(n).is_some());
		}
		assert!(BitPos::<usize>::new(bits_of::<usize>() as u8).is_none());
	}

	#[test]
	fn select_ctors() {
		for n in 0 .. 8 {
			assert!(BitSel::<u8>::new(1 << n).is_some());
		}
		assert!(BitSel::<u8>::new(0).is_none());
		assert!(BitSel::<u8>::new(3).is_none());

		for n in 0 .. 16 {
			assert!(BitSel::<u16>::new(1 << n).is_some());
		}
		assert!(BitSel::<u16>::new(0).is_none());
		assert!(BitSel::<u16>::new(3).is_none());

		for n in 0 .. 32 {
			assert!(BitSel::<u32>::new(1 << n).is_some());
		}
		assert!(BitSel::<u32>::new(0).is_none());
		assert!(BitSel::<u32>::new(3).is_none());

		#[cfg(target_pointer_width = "64")]
		{
			for n in 0 .. 64 {
				assert!(BitSel::<u64>::new(1 << n).is_some());
			}
			assert!(BitSel::<u64>::new(0).is_none());
			assert!(BitSel::<u64>::new(3).is_none());
		}

		for n in 0 .. bits_of::<usize>() as u8 {
			assert!(BitSel::<usize>::new(1 << n).is_some());
		}
		assert!(BitSel::<usize>::new(0).is_none());
		assert!(BitSel::<usize>::new(3).is_none());
	}

	#[test]
	fn ranges() {
		let mut range = BitIdx::<u16>::range_all();
		assert_eq!(range.next(), BitIdx::new(0).ok());
		assert_eq!(range.next_back(), BitIdx::new(15).ok());
		assert_eq!(range.count(), 14);

		let mut range = BitEnd::<u8>::range_from(BitIdx::new(1).unwrap());
		assert_eq!(range.next(), BitEnd::new(1));
		assert_eq!(range.next_back(), BitEnd::new(8));
		assert_eq!(range.count(), 6);

		let mut range = BitPos::<u8>::range_all();
		assert_eq!(range.next(), BitPos::new(0));
		assert_eq!(range.next_back(), BitPos::new(7));
		assert_eq!(range.count(), 6);

		let mut range = BitSel::<u8>::range_all();
		assert_eq!(range.next(), BitSel::new(1));
		assert_eq!(range.next_back(), BitSel::new(128));
		assert_eq!(range.count(), 6);
	}

	#[test]
	fn index_cycle() {
		let six = BitIdx::<u8>::new(6).unwrap();
		let (seven, step) = six.next();
		assert_eq!(seven, BitIdx::new(7).unwrap());
		assert!(!step);

		let (zero, step) = seven.next();
		assert_eq!(zero, BitIdx::MIN);
		assert!(step);

		let (seven, step) = zero.prev();
		assert_eq!(seven, BitIdx::new(7).unwrap());
		assert!(step);

		let (six, step) = seven.prev();
		assert_eq!(six, BitIdx::new(6).unwrap());
		assert!(!step);

		let fourteen = BitIdx::<u16>::new(14).unwrap();
		let (fifteen, step) = fourteen.next();
		assert_eq!(fifteen, BitIdx::new(15).unwrap());
		assert!(!step);
		let (zero, step) = fifteen.next();
		assert_eq!(zero, BitIdx::MIN);
		assert!(step);
		let (fifteen, step) = zero.prev();
		assert_eq!(fifteen, BitIdx::new(15).unwrap());
		assert!(step);
		let (fourteen, step) = fifteen.prev();
		assert_eq!(fourteen, BitIdx::new(14).unwrap());
		assert!(!step);
	}

	#[test]
	fn jumps() {
		let (jump, head) = BitIdx::<u8>::new(1).unwrap().offset(2);
		assert_eq!(jump, 0);
		assert_eq!(head, BitIdx::new(3).unwrap());

		let (jump, head) = BitIdx::<u8>::MAX.offset(1);
		assert_eq!(jump, 1);
		assert_eq!(head, BitIdx::MIN);

		let (jump, head) = BitIdx::<u16>::new(10).unwrap().offset(40);
		// 10 is in 0..16; 10+40 is in 48..64
		assert_eq!(jump, 3);
		assert_eq!(head, BitIdx::new(2).unwrap());

		//  .offset() wraps at the `isize` boundary
		let (jump, head) = BitIdx::<u8>::MAX.offset(isize::MAX);
		assert_eq!(jump, -(((isize::MAX as usize + 1) >> 3) as isize));
		assert_eq!(head, BitIdx::MAX.prev().0);

		let (elts, tail) = BitIdx::<u8>::new(4).unwrap().span(0);
		assert_eq!(elts, 0);
		assert_eq!(tail, BitEnd::new(4).unwrap());

		let (elts, tail) = BitIdx::<u8>::new(3).unwrap().span(3);
		assert_eq!(elts, 1);
		assert_eq!(tail, BitEnd::new(6).unwrap());

		let (elts, tail) = BitIdx::<u16>::new(10).unwrap().span(40);
		assert_eq!(elts, 4);
		assert_eq!(tail, BitEnd::new(2).unwrap());
	}

	#[test]
	fn mask_operators() {
		let mut mask = BitIdx::<u8>::new(2)
			.unwrap()
			.range(BitEnd::new(5).unwrap())
			.map(BitIdx::select::<Lsb0>)
			.sum::<BitMask<u8>>();
		assert_eq!(mask, BitMask::new(28));
		assert_eq!(mask & 25, BitMask::new(24));
		assert_eq!(mask | 32, BitMask::new(60));
		assert_eq!(!mask, BitMask::new(!28));
		let yes = BitSel::<u8>::new(16).unwrap();
		let no = BitSel::<u8>::new(64).unwrap();
		assert!(mask.test(yes));
		assert!(!mask.test(no));
		mask.insert(no);
		assert!(mask.test(no));
	}

	#[test]
	#[cfg(feature = "alloc")]
	fn render() {
		#[cfg(not(feature = "std"))]
		use alloc::format;

		assert_eq!(format!("{:?}", BitIdx::<u8>::MAX), "BitIdx<u8>(111)");
		assert_eq!(format!("{:?}", BitIdx::<u16>::MAX), "BitIdx<u16>(1111)");
		assert_eq!(format!("{:?}", BitIdx::<u32>::MAX), "BitIdx<u32>(11111)");

		assert_eq!(
			format!("{:?}", BitIdx::<u8>::new(8).unwrap_err()),
			"BitIdxError<u8>(8)"
		);
		assert_eq!(
			format!("{:?}", BitIdx::<u16>::new(16).unwrap_err()),
			"BitIdxError<u16>(16)"
		);
		assert_eq!(
			format!("{:?}", BitIdx::<u32>::new(32).unwrap_err()),
			"BitIdxError<u32>(32)"
		);

		assert_eq!(format!("{:?}", BitEnd::<u8>::MAX), "BitEnd<u8>(1000)");
		assert_eq!(format!("{:?}", BitEnd::<u16>::MAX), "BitEnd<u16>(10000)");
		assert_eq!(format!("{:?}", BitEnd::<u32>::MAX), "BitEnd<u32>(100000)");

		assert_eq!(format!("{:?}", BitPos::<u8>::MAX), "BitPos<u8>(111)");
		assert_eq!(format!("{:?}", BitPos::<u16>::MAX), "BitPos<u16>(1111)");
		assert_eq!(format!("{:?}", BitPos::<u32>::MAX), "BitPos<u32>(11111)");

		assert_eq!(
			format!("{:?}", BitSel::<u8>::new(1).unwrap()),
			"BitSel<u8>(00000001)",
		);
		assert_eq!(
			format!("{:?}", BitSel::<u16>::new(1).unwrap()),
			"BitSel<u16>(0000000000000001)",
		);
		assert_eq!(
			format!("{:?}", BitSel::<u32>::new(1).unwrap()),
			"BitSel<u32>(00000000000000000000000000000001)",
		);

		assert_eq!(
			format!("{:?}", BitMask::<u8>::new(1 | 4 | 32)),
			"BitMask<u8>(00100101)",
		);
		assert_eq!(
			format!("{:?}", BitMask::<u16>::new(1 | 4 | 32)),
			"BitMask<u16>(0000000000100101)",
		);
		assert_eq!(
			format!("{:?}", BitMask::<u32>::new(1 | 4 | 32)),
			"BitMask<u32>(00000000000000000000000000100101)",
		);

		#[cfg(target_pointer_width = "64")]
		{
			assert_eq!(
				format!("{:?}", BitIdx::<u64>::MAX),
				"BitIdx<u64>(111111)",
			);
			assert_eq!(
				format!("{:?}", BitIdx::<u64>::new(64).unwrap_err()),
				"BitIdxError<u64>(64)",
			);
			assert_eq!(
				format!("{:?}", BitEnd::<u64>::MAX),
				"BitEnd<u64>(1000000)",
			);
			assert_eq!(
				format!("{:?}", BitPos::<u64>::MAX),
				"BitPos<u64>(111111)",
			);
			assert_eq!(
				format!("{:?}", BitSel::<u64>::new(1).unwrap()),
				"BitSel<u64>(0000000000000000000000000000000000000000000000000000000000000001)",
			);
			assert_eq!(
				format!("{:?}", BitMask::<u64>::new(1 | 4 | 32)),
				"BitMask<u64>(0000000000000000000000000000000000000000000000000000000000100101)",
			);
		}
	}
}