chrono/datetime/
mod.rs

1// This is a part of Chrono.
2// See README.md and LICENSE.txt for details.
3
4//! ISO 8601 date and time with time zone.
5
6#[cfg(all(feature = "alloc", not(feature = "std"), not(test)))]
7use alloc::string::String;
8use core::borrow::Borrow;
9use core::cmp::Ordering;
10use core::fmt::Write;
11use core::ops::{Add, AddAssign, Sub, SubAssign};
12use core::time::Duration;
13use core::{fmt, hash, str};
14#[cfg(feature = "std")]
15use std::time::{SystemTime, UNIX_EPOCH};
16
17#[cfg(all(feature = "unstable-locales", feature = "alloc"))]
18use crate::format::Locale;
19use crate::format::{
20    parse, parse_and_remainder, parse_rfc3339, Fixed, Item, ParseError, ParseResult, Parsed,
21    StrftimeItems, TOO_LONG,
22};
23#[cfg(feature = "alloc")]
24use crate::format::{write_rfc2822, write_rfc3339, DelayedFormat, SecondsFormat};
25use crate::naive::{Days, IsoWeek, NaiveDate, NaiveDateTime, NaiveTime};
26#[cfg(feature = "clock")]
27use crate::offset::Local;
28use crate::offset::{FixedOffset, LocalResult, Offset, TimeZone, Utc};
29#[allow(deprecated)]
30use crate::Date;
31use crate::{expect, try_opt};
32use crate::{Datelike, Months, TimeDelta, Timelike, Weekday};
33
34#[cfg(any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"))]
35use rkyv::{Archive, Deserialize, Serialize};
36
37/// documented at re-export site
38#[cfg(feature = "serde")]
39pub(super) mod serde;
40
41#[cfg(test)]
42mod tests;
43
44/// ISO 8601 combined date and time with time zone.
45///
46/// There are some constructors implemented here (the `from_*` methods), but
47/// the general-purpose constructors are all via the methods on the
48/// [`TimeZone`](./offset/trait.TimeZone.html) implementations.
49#[derive(Clone)]
50#[cfg_attr(
51    any(feature = "rkyv", feature = "rkyv-16", feature = "rkyv-32", feature = "rkyv-64"),
52    derive(Archive, Deserialize, Serialize),
53    archive(compare(PartialEq, PartialOrd))
54)]
55#[cfg_attr(feature = "rkyv-validation", archive(check_bytes))]
56pub struct DateTime<Tz: TimeZone> {
57    datetime: NaiveDateTime,
58    offset: Tz::Offset,
59}
60
61/// The minimum possible `DateTime<Utc>`.
62#[deprecated(since = "0.4.20", note = "Use DateTime::MIN_UTC instead")]
63pub const MIN_DATETIME: DateTime<Utc> = DateTime::<Utc>::MIN_UTC;
64/// The maximum possible `DateTime<Utc>`.
65#[deprecated(since = "0.4.20", note = "Use DateTime::MAX_UTC instead")]
66pub const MAX_DATETIME: DateTime<Utc> = DateTime::<Utc>::MAX_UTC;
67
68impl<Tz: TimeZone> DateTime<Tz> {
69    /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`.
70    ///
71    /// This is a low-level method, intended for use cases such as deserializing a `DateTime` or
72    /// passing it through FFI.
73    ///
74    /// For regular use you will probably want to use a method such as
75    /// [`TimeZone::from_local_datetime`] or [`NaiveDateTime::and_local_timezone`] instead.
76    ///
77    /// # Example
78    ///
79    /// ```
80    /// # #[cfg(feature = "clock")] {
81    /// use chrono::{DateTime, Local};
82    ///
83    /// let dt = Local::now();
84    /// // Get components
85    /// let naive_utc = dt.naive_utc();
86    /// let offset = dt.offset().clone();
87    /// // Serialize, pass through FFI... and recreate the `DateTime`:
88    /// let dt_new = DateTime::<Local>::from_naive_utc_and_offset(naive_utc, offset);
89    /// assert_eq!(dt, dt_new);
90    /// # }
91    /// ```
92    #[inline]
93    #[must_use]
94    pub const fn from_naive_utc_and_offset(
95        datetime: NaiveDateTime,
96        offset: Tz::Offset,
97    ) -> DateTime<Tz> {
98        DateTime { datetime, offset }
99    }
100
101    /// Makes a new `DateTime` from its components: a `NaiveDateTime` in UTC and an `Offset`.
102    #[inline]
103    #[must_use]
104    #[deprecated(
105        since = "0.4.27",
106        note = "Use TimeZone::from_utc_datetime() or DateTime::from_naive_utc_and_offset instead"
107    )]
108    pub fn from_utc(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> {
109        DateTime { datetime, offset }
110    }
111
112    /// Makes a new `DateTime` from a `NaiveDateTime` in *local* time and an `Offset`.
113    ///
114    /// # Panics
115    ///
116    /// Panics if the local datetime can't be converted to UTC because it would be out of range.
117    ///
118    /// This can happen if `datetime` is near the end of the representable range of `NaiveDateTime`,
119    /// and the offset from UTC pushes it beyond that.
120    #[inline]
121    #[must_use]
122    #[deprecated(
123        since = "0.4.27",
124        note = "Use TimeZone::from_local_datetime() or NaiveDateTime::and_local_timezone instead"
125    )]
126    pub fn from_local(datetime: NaiveDateTime, offset: Tz::Offset) -> DateTime<Tz> {
127        let datetime_utc = datetime - offset.fix();
128
129        DateTime { datetime: datetime_utc, offset }
130    }
131
132    /// Retrieves the date component with an associated timezone.
133    ///
134    /// Unless you are immediately planning on turning this into a `DateTime`
135    /// with the same timezone you should use the [`date_naive`](DateTime::date_naive) method.
136    ///
137    /// [`NaiveDate`] is a more well-defined type, and has more traits implemented on it,
138    /// so should be preferred to [`Date`] any time you truly want to operate on dates.
139    ///
140    /// # Panics
141    ///
142    /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
143    /// method will panic if the offset from UTC would push the local date outside of the
144    /// representable range of a [`Date`].
145    #[inline]
146    #[deprecated(since = "0.4.23", note = "Use `date_naive()` instead")]
147    #[allow(deprecated)]
148    #[must_use]
149    pub fn date(&self) -> Date<Tz> {
150        Date::from_utc(self.naive_local().date(), self.offset.clone())
151    }
152
153    /// Retrieves the date component.
154    ///
155    /// # Panics
156    ///
157    /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
158    /// method will panic if the offset from UTC would push the local date outside of the
159    /// representable range of a [`NaiveDate`].
160    ///
161    /// # Example
162    ///
163    /// ```
164    /// use chrono::prelude::*;
165    ///
166    /// let date: DateTime<Utc> = Utc.with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap();
167    /// let other: DateTime<FixedOffset> =
168    ///     FixedOffset::east_opt(23).unwrap().with_ymd_and_hms(2020, 1, 1, 0, 0, 0).unwrap();
169    /// assert_eq!(date.date_naive(), other.date_naive());
170    /// ```
171    #[inline]
172    #[must_use]
173    pub fn date_naive(&self) -> NaiveDate {
174        self.naive_local().date()
175    }
176
177    /// Retrieves the time component.
178    #[inline]
179    #[must_use]
180    pub fn time(&self) -> NaiveTime {
181        self.datetime.time() + self.offset.fix()
182    }
183
184    /// Returns the number of non-leap seconds since January 1, 1970 0:00:00 UTC
185    /// (aka "UNIX timestamp").
186    ///
187    /// The reverse operation of creating a [`DateTime`] from a timestamp can be performed
188    /// using [`from_timestamp`](DateTime::from_timestamp) or [`TimeZone::timestamp_opt`].
189    ///
190    /// ```
191    /// use chrono::{DateTime, TimeZone, Utc};
192    ///
193    /// let dt: DateTime<Utc> = Utc.with_ymd_and_hms(2015, 5, 15, 0, 0, 0).unwrap();
194    /// assert_eq!(dt.timestamp(), 1431648000);
195    ///
196    /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt);
197    /// ```
198    #[inline]
199    #[must_use]
200    pub const fn timestamp(&self) -> i64 {
201        let gregorian_day = self.datetime.date().num_days_from_ce() as i64;
202        let seconds_from_midnight = self.datetime.time().num_seconds_from_midnight() as i64;
203        (gregorian_day - UNIX_EPOCH_DAY) * 86_400 + seconds_from_midnight
204    }
205
206    /// Returns the number of non-leap-milliseconds since January 1, 1970 UTC.
207    ///
208    /// # Example
209    ///
210    /// ```
211    /// use chrono::{NaiveDate, Utc};
212    ///
213    /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1)
214    ///     .unwrap()
215    ///     .and_hms_milli_opt(0, 0, 1, 444)
216    ///     .unwrap()
217    ///     .and_local_timezone(Utc)
218    ///     .unwrap();
219    /// assert_eq!(dt.timestamp_millis(), 1_444);
220    ///
221    /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9)
222    ///     .unwrap()
223    ///     .and_hms_milli_opt(1, 46, 40, 555)
224    ///     .unwrap()
225    ///     .and_local_timezone(Utc)
226    ///     .unwrap();
227    /// assert_eq!(dt.timestamp_millis(), 1_000_000_000_555);
228    /// ```
229    #[inline]
230    #[must_use]
231    pub const fn timestamp_millis(&self) -> i64 {
232        let as_ms = self.timestamp() * 1000;
233        as_ms + self.timestamp_subsec_millis() as i64
234    }
235
236    /// Returns the number of non-leap-microseconds since January 1, 1970 UTC.
237    ///
238    /// # Example
239    ///
240    /// ```
241    /// use chrono::{NaiveDate, Utc};
242    ///
243    /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1)
244    ///     .unwrap()
245    ///     .and_hms_micro_opt(0, 0, 1, 444)
246    ///     .unwrap()
247    ///     .and_local_timezone(Utc)
248    ///     .unwrap();
249    /// assert_eq!(dt.timestamp_micros(), 1_000_444);
250    ///
251    /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9)
252    ///     .unwrap()
253    ///     .and_hms_micro_opt(1, 46, 40, 555)
254    ///     .unwrap()
255    ///     .and_local_timezone(Utc)
256    ///     .unwrap();
257    /// assert_eq!(dt.timestamp_micros(), 1_000_000_000_000_555);
258    /// ```
259    #[inline]
260    #[must_use]
261    pub const fn timestamp_micros(&self) -> i64 {
262        let as_us = self.timestamp() * 1_000_000;
263        as_us + self.timestamp_subsec_micros() as i64
264    }
265
266    /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC.
267    ///
268    /// # Panics
269    ///
270    /// An `i64` with nanosecond precision can span a range of ~584 years. This function panics on
271    /// an out of range `DateTime`.
272    ///
273    /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192
274    /// and 2262-04-11T23:47:16.854775807.
275    #[deprecated(since = "0.4.31", note = "use `timestamp_nanos_opt()` instead")]
276    #[inline]
277    #[must_use]
278    pub const fn timestamp_nanos(&self) -> i64 {
279        expect(
280            self.timestamp_nanos_opt(),
281            "value can not be represented in a timestamp with nanosecond precision.",
282        )
283    }
284
285    /// Returns the number of non-leap-nanoseconds since January 1, 1970 UTC.
286    ///
287    /// # Errors
288    ///
289    /// An `i64` with nanosecond precision can span a range of ~584 years. This function returns
290    /// `None` on an out of range `DateTime`.
291    ///
292    /// The dates that can be represented as nanoseconds are between 1677-09-21T00:12:43.145224192
293    /// and 2262-04-11T23:47:16.854775807.
294    ///
295    /// # Example
296    ///
297    /// ```
298    /// use chrono::{NaiveDate, Utc};
299    ///
300    /// let dt = NaiveDate::from_ymd_opt(1970, 1, 1)
301    ///     .unwrap()
302    ///     .and_hms_nano_opt(0, 0, 1, 444)
303    ///     .unwrap()
304    ///     .and_local_timezone(Utc)
305    ///     .unwrap();
306    /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_444));
307    ///
308    /// let dt = NaiveDate::from_ymd_opt(2001, 9, 9)
309    ///     .unwrap()
310    ///     .and_hms_nano_opt(1, 46, 40, 555)
311    ///     .unwrap()
312    ///     .and_local_timezone(Utc)
313    ///     .unwrap();
314    /// assert_eq!(dt.timestamp_nanos_opt(), Some(1_000_000_000_000_000_555));
315    ///
316    /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21)
317    ///     .unwrap()
318    ///     .and_hms_nano_opt(0, 12, 43, 145_224_192)
319    ///     .unwrap()
320    ///     .and_local_timezone(Utc)
321    ///     .unwrap();
322    /// assert_eq!(dt.timestamp_nanos_opt(), Some(-9_223_372_036_854_775_808));
323    ///
324    /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11)
325    ///     .unwrap()
326    ///     .and_hms_nano_opt(23, 47, 16, 854_775_807)
327    ///     .unwrap()
328    ///     .and_local_timezone(Utc)
329    ///     .unwrap();
330    /// assert_eq!(dt.timestamp_nanos_opt(), Some(9_223_372_036_854_775_807));
331    ///
332    /// let dt = NaiveDate::from_ymd_opt(1677, 9, 21)
333    ///     .unwrap()
334    ///     .and_hms_nano_opt(0, 12, 43, 145_224_191)
335    ///     .unwrap()
336    ///     .and_local_timezone(Utc)
337    ///     .unwrap();
338    /// assert_eq!(dt.timestamp_nanos_opt(), None);
339    ///
340    /// let dt = NaiveDate::from_ymd_opt(2262, 4, 11)
341    ///     .unwrap()
342    ///     .and_hms_nano_opt(23, 47, 16, 854_775_808)
343    ///     .unwrap()
344    ///     .and_local_timezone(Utc)
345    ///     .unwrap();
346    /// assert_eq!(dt.timestamp_nanos_opt(), None);
347    /// ```
348    #[inline]
349    #[must_use]
350    pub const fn timestamp_nanos_opt(&self) -> Option<i64> {
351        let mut timestamp = self.timestamp();
352        let mut subsec_nanos = self.timestamp_subsec_nanos() as i64;
353        // `(timestamp * 1_000_000_000) + subsec_nanos` may create a temporary that underflows while
354        // the final value can be represented as an `i64`.
355        // As workaround we converting the negative case to:
356        // `((timestamp + 1) * 1_000_000_000) + (ns - 1_000_000_000)``
357        //
358        // Also see <https://github.com/chronotope/chrono/issues/1289>.
359        if timestamp < 0 {
360            subsec_nanos -= 1_000_000_000;
361            timestamp += 1;
362        }
363        try_opt!(timestamp.checked_mul(1_000_000_000)).checked_add(subsec_nanos)
364    }
365
366    /// Returns the number of milliseconds since the last second boundary.
367    ///
368    /// In event of a leap second this may exceed 999.
369    #[inline]
370    #[must_use]
371    pub const fn timestamp_subsec_millis(&self) -> u32 {
372        self.timestamp_subsec_nanos() / 1_000_000
373    }
374
375    /// Returns the number of microseconds since the last second boundary.
376    ///
377    /// In event of a leap second this may exceed 999,999.
378    #[inline]
379    #[must_use]
380    pub const fn timestamp_subsec_micros(&self) -> u32 {
381        self.timestamp_subsec_nanos() / 1_000
382    }
383
384    /// Returns the number of nanoseconds since the last second boundary
385    ///
386    /// In event of a leap second this may exceed 999,999,999.
387    #[inline]
388    #[must_use]
389    pub const fn timestamp_subsec_nanos(&self) -> u32 {
390        self.datetime.time().nanosecond()
391    }
392
393    /// Retrieves an associated offset from UTC.
394    #[inline]
395    #[must_use]
396    pub const fn offset(&self) -> &Tz::Offset {
397        &self.offset
398    }
399
400    /// Retrieves an associated time zone.
401    #[inline]
402    #[must_use]
403    pub fn timezone(&self) -> Tz {
404        TimeZone::from_offset(&self.offset)
405    }
406
407    /// Changes the associated time zone.
408    /// The returned `DateTime` references the same instant of time from the perspective of the
409    /// provided time zone.
410    #[inline]
411    #[must_use]
412    pub fn with_timezone<Tz2: TimeZone>(&self, tz: &Tz2) -> DateTime<Tz2> {
413        tz.from_utc_datetime(&self.datetime)
414    }
415
416    /// Fix the offset from UTC to its current value, dropping the associated timezone information.
417    /// This it useful for converting a generic `DateTime<Tz: Timezone>` to `DateTime<FixedOffset>`.
418    #[inline]
419    #[must_use]
420    pub fn fixed_offset(&self) -> DateTime<FixedOffset> {
421        self.with_timezone(&self.offset().fix())
422    }
423
424    /// Turn this `DateTime` into a `DateTime<Utc>`, dropping the offset and associated timezone
425    /// information.
426    #[inline]
427    #[must_use]
428    pub const fn to_utc(&self) -> DateTime<Utc> {
429        DateTime { datetime: self.datetime, offset: Utc }
430    }
431
432    /// Adds given `TimeDelta` to the current date and time.
433    ///
434    /// # Errors
435    ///
436    /// Returns `None` if the resulting date would be out of range.
437    #[inline]
438    #[must_use]
439    pub fn checked_add_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> {
440        let datetime = self.datetime.checked_add_signed(rhs)?;
441        let tz = self.timezone();
442        Some(tz.from_utc_datetime(&datetime))
443    }
444
445    /// Adds given `Months` to the current date and time.
446    ///
447    /// Uses the last day of the month if the day does not exist in the resulting month.
448    ///
449    /// See [`NaiveDate::checked_add_months`] for more details on behavior.
450    ///
451    /// # Errors
452    ///
453    /// Returns `None` if:
454    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
455    ///   daylight saving time transition.
456    /// - The resulting UTC datetime would be out of range.
457    /// - The resulting local datetime would be out of range (unless `months` is zero).
458    #[must_use]
459    pub fn checked_add_months(self, months: Months) -> Option<DateTime<Tz>> {
460        // `NaiveDate::checked_add_months` has a fast path for `Months(0)` that does not validate
461        // the resulting date, with which we can return `Some` even for an out of range local
462        // datetime.
463        self.overflowing_naive_local()
464            .checked_add_months(months)?
465            .and_local_timezone(Tz::from_offset(&self.offset))
466            .single()
467    }
468
469    /// Subtracts given `TimeDelta` from the current date and time.
470    ///
471    /// # Errors
472    ///
473    /// Returns `None` if the resulting date would be out of range.
474    #[inline]
475    #[must_use]
476    pub fn checked_sub_signed(self, rhs: TimeDelta) -> Option<DateTime<Tz>> {
477        let datetime = self.datetime.checked_sub_signed(rhs)?;
478        let tz = self.timezone();
479        Some(tz.from_utc_datetime(&datetime))
480    }
481
482    /// Subtracts given `Months` from the current date and time.
483    ///
484    /// Uses the last day of the month if the day does not exist in the resulting month.
485    ///
486    /// See [`NaiveDate::checked_sub_months`] for more details on behavior.
487    ///
488    /// # Errors
489    ///
490    /// Returns `None` if:
491    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
492    ///   daylight saving time transition.
493    /// - The resulting UTC datetime would be out of range.
494    /// - The resulting local datetime would be out of range (unless `months` is zero).
495    #[must_use]
496    pub fn checked_sub_months(self, months: Months) -> Option<DateTime<Tz>> {
497        // `NaiveDate::checked_sub_months` has a fast path for `Months(0)` that does not validate
498        // the resulting date, with which we can return `Some` even for an out of range local
499        // datetime.
500        self.overflowing_naive_local()
501            .checked_sub_months(months)?
502            .and_local_timezone(Tz::from_offset(&self.offset))
503            .single()
504    }
505
506    /// Add a duration in [`Days`] to the date part of the `DateTime`.
507    ///
508    /// # Errors
509    ///
510    /// Returns `None` if:
511    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
512    ///   daylight saving time transition.
513    /// - The resulting UTC datetime would be out of range.
514    /// - The resulting local datetime would be out of range (unless `days` is zero).
515    #[must_use]
516    pub fn checked_add_days(self, days: Days) -> Option<Self> {
517        if days == Days::new(0) {
518            return Some(self);
519        }
520        // `NaiveDate::add_days` has a fast path if the result remains within the same year, that
521        // does not validate the resulting date. This allows us to return `Some` even for an out of
522        // range local datetime when adding `Days(0)`.
523        self.overflowing_naive_local()
524            .checked_add_days(days)
525            .and_then(|dt| self.timezone().from_local_datetime(&dt).single())
526            .filter(|dt| dt <= &DateTime::<Utc>::MAX_UTC)
527    }
528
529    /// Subtract a duration in [`Days`] from the date part of the `DateTime`.
530    ///
531    /// # Errors
532    ///
533    /// Returns `None` if:
534    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
535    ///   daylight saving time transition.
536    /// - The resulting UTC datetime would be out of range.
537    /// - The resulting local datetime would be out of range (unless `days` is zero).
538    #[must_use]
539    pub fn checked_sub_days(self, days: Days) -> Option<Self> {
540        // `NaiveDate::add_days` has a fast path if the result remains within the same year, that
541        // does not validate the resulting date. This allows us to return `Some` even for an out of
542        // range local datetime when adding `Days(0)`.
543        self.overflowing_naive_local()
544            .checked_sub_days(days)
545            .and_then(|dt| self.timezone().from_local_datetime(&dt).single())
546            .filter(|dt| dt >= &DateTime::<Utc>::MIN_UTC)
547    }
548
549    /// Subtracts another `DateTime` from the current date and time.
550    /// This does not overflow or underflow at all.
551    #[inline]
552    #[must_use]
553    pub fn signed_duration_since<Tz2: TimeZone>(
554        self,
555        rhs: impl Borrow<DateTime<Tz2>>,
556    ) -> TimeDelta {
557        self.datetime.signed_duration_since(rhs.borrow().datetime)
558    }
559
560    /// Returns a view to the naive UTC datetime.
561    #[inline]
562    #[must_use]
563    pub const fn naive_utc(&self) -> NaiveDateTime {
564        self.datetime
565    }
566
567    /// Returns a view to the naive local datetime.
568    ///
569    /// # Panics
570    ///
571    /// [`DateTime`] internally stores the date and time in UTC with a [`NaiveDateTime`]. This
572    /// method will panic if the offset from UTC would push the local datetime outside of the
573    /// representable range of a [`NaiveDateTime`].
574    #[inline]
575    #[must_use]
576    pub fn naive_local(&self) -> NaiveDateTime {
577        self.datetime
578            .checked_add_offset(self.offset.fix())
579            .expect("Local time out of range for `NaiveDateTime`")
580    }
581
582    /// Returns the naive local datetime.
583    ///
584    /// This makes use of the buffer space outside of the representable range of values of
585    /// `NaiveDateTime`. The result can be used as intermediate value, but should never be exposed
586    /// outside chrono.
587    #[inline]
588    #[must_use]
589    pub(crate) fn overflowing_naive_local(&self) -> NaiveDateTime {
590        self.datetime.overflowing_add_offset(self.offset.fix())
591    }
592
593    /// Retrieve the elapsed years from now to the given [`DateTime`].
594    ///
595    /// # Errors
596    ///
597    /// Returns `None` if `base > self`.
598    #[must_use]
599    pub fn years_since(&self, base: Self) -> Option<u32> {
600        let mut years = self.year() - base.year();
601        let earlier_time =
602            (self.month(), self.day(), self.time()) < (base.month(), base.day(), base.time());
603
604        years -= match earlier_time {
605            true => 1,
606            false => 0,
607        };
608
609        match years >= 0 {
610            true => Some(years as u32),
611            false => None,
612        }
613    }
614
615    /// Returns an RFC 2822 date and time string such as `Tue, 1 Jul 2003 10:52:37 +0200`.
616    ///
617    /// # Panics
618    ///
619    /// Panics if the date can not be represented in this format: the year may not be negative and
620    /// can not have more than 4 digits.
621    #[cfg(feature = "alloc")]
622    #[must_use]
623    pub fn to_rfc2822(&self) -> String {
624        let mut result = String::with_capacity(32);
625        write_rfc2822(&mut result, self.overflowing_naive_local(), self.offset.fix())
626            .expect("writing rfc2822 datetime to string should never fail");
627        result
628    }
629
630    /// Returns an RFC 3339 and ISO 8601 date and time string such as `1996-12-19T16:39:57-08:00`.
631    #[cfg(feature = "alloc")]
632    #[must_use]
633    pub fn to_rfc3339(&self) -> String {
634        // For some reason a string with a capacity less than 32 is ca 20% slower when benchmarking.
635        let mut result = String::with_capacity(32);
636        let naive = self.overflowing_naive_local();
637        let offset = self.offset.fix();
638        write_rfc3339(&mut result, naive, offset, SecondsFormat::AutoSi, false)
639            .expect("writing rfc3339 datetime to string should never fail");
640        result
641    }
642
643    /// Return an RFC 3339 and ISO 8601 date and time string with subseconds
644    /// formatted as per `SecondsFormat`.
645    ///
646    /// If `use_z` is true and the timezone is UTC (offset 0), uses `Z` as
647    /// per [`Fixed::TimezoneOffsetColonZ`]. If `use_z` is false, uses
648    /// [`Fixed::TimezoneOffsetColon`]
649    ///
650    /// # Examples
651    ///
652    /// ```rust
653    /// # use chrono::{FixedOffset, SecondsFormat, TimeZone, NaiveDate};
654    /// let dt = NaiveDate::from_ymd_opt(2018, 1, 26)
655    ///     .unwrap()
656    ///     .and_hms_micro_opt(18, 30, 9, 453_829)
657    ///     .unwrap()
658    ///     .and_utc();
659    /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, false), "2018-01-26T18:30:09.453+00:00");
660    /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Millis, true), "2018-01-26T18:30:09.453Z");
661    /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T18:30:09Z");
662    ///
663    /// let pst = FixedOffset::east_opt(8 * 60 * 60).unwrap();
664    /// let dt = pst
665    ///     .from_local_datetime(
666    ///         &NaiveDate::from_ymd_opt(2018, 1, 26)
667    ///             .unwrap()
668    ///             .and_hms_micro_opt(10, 30, 9, 453_829)
669    ///             .unwrap(),
670    ///     )
671    ///     .unwrap();
672    /// assert_eq!(dt.to_rfc3339_opts(SecondsFormat::Secs, true), "2018-01-26T10:30:09+08:00");
673    /// ```
674    #[cfg(feature = "alloc")]
675    #[must_use]
676    pub fn to_rfc3339_opts(&self, secform: SecondsFormat, use_z: bool) -> String {
677        let mut result = String::with_capacity(38);
678        write_rfc3339(&mut result, self.naive_local(), self.offset.fix(), secform, use_z)
679            .expect("writing rfc3339 datetime to string should never fail");
680        result
681    }
682
683    /// Set the time to a new fixed time on the existing date.
684    ///
685    /// # Errors
686    ///
687    /// Returns `LocalResult::None` if the datetime is at the edge of the representable range for a
688    /// `DateTime`, and `with_time` would push the value in UTC out of range.
689    ///
690    /// # Example
691    ///
692    /// ```
693    /// # #[cfg(feature = "clock")] {
694    /// use chrono::{Local, NaiveTime};
695    ///
696    /// let noon = NaiveTime::from_hms_opt(12, 0, 0).unwrap();
697    /// let today_noon = Local::now().with_time(noon);
698    /// let today_midnight = Local::now().with_time(NaiveTime::MIN);
699    ///
700    /// assert_eq!(today_noon.single().unwrap().time(), noon);
701    /// assert_eq!(today_midnight.single().unwrap().time(), NaiveTime::MIN);
702    /// # }
703    /// ```
704    #[must_use]
705    pub fn with_time(&self, time: NaiveTime) -> LocalResult<Self> {
706        self.timezone().from_local_datetime(&self.overflowing_naive_local().date().and_time(time))
707    }
708
709    /// The minimum possible `DateTime<Utc>`.
710    pub const MIN_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MIN, offset: Utc };
711    /// The maximum possible `DateTime<Utc>`.
712    pub const MAX_UTC: DateTime<Utc> = DateTime { datetime: NaiveDateTime::MAX, offset: Utc };
713}
714
715impl DateTime<Utc> {
716    /// Makes a new `DateTime<Utc>` from the number of non-leap seconds
717    /// since January 1, 1970 0:00:00 UTC (aka "UNIX timestamp")
718    /// and the number of nanoseconds since the last whole non-leap second.
719    ///
720    /// This is guaranteed to round-trip with regard to [`timestamp`](DateTime::timestamp) and
721    /// [`timestamp_subsec_nanos`](DateTime::timestamp_subsec_nanos).
722    ///
723    /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
724    /// [`TimeZone::timestamp_opt`] or [`DateTime::with_timezone`].
725    ///
726    /// The nanosecond part can exceed 1,000,000,000 in order to represent a
727    /// [leap second](NaiveTime#leap-second-handling), but only when `secs % 60 == 59`.
728    /// (The true "UNIX timestamp" cannot represent a leap second unambiguously.)
729    ///
730    /// # Errors
731    ///
732    /// Returns `None` on out-of-range number of seconds and/or
733    /// invalid nanosecond, otherwise returns `Some(DateTime {...})`.
734    ///
735    /// # Example
736    ///
737    /// ```
738    /// use chrono::DateTime;
739    ///
740    /// let dt = DateTime::from_timestamp(1431648000, 0).expect("invalid timestamp");
741    ///
742    /// assert_eq!(dt.to_string(), "2015-05-15 00:00:00 UTC");
743    /// assert_eq!(DateTime::from_timestamp(dt.timestamp(), dt.timestamp_subsec_nanos()).unwrap(), dt);
744    /// ```
745    #[inline]
746    #[must_use]
747    pub const fn from_timestamp(secs: i64, nsecs: u32) -> Option<Self> {
748        let days = secs.div_euclid(86_400) + UNIX_EPOCH_DAY;
749        let secs = secs.rem_euclid(86_400);
750        if days < i32::MIN as i64 || days > i32::MAX as i64 {
751            return None;
752        }
753        let date = try_opt!(NaiveDate::from_num_days_from_ce_opt(days as i32));
754        let time = try_opt!(NaiveTime::from_num_seconds_from_midnight_opt(secs as u32, nsecs));
755        Some(date.and_time(time).and_utc())
756    }
757
758    /// Makes a new `DateTime<Utc>` from the number of non-leap milliseconds
759    /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
760    ///
761    /// This is guaranteed to round-trip with [`timestamp_millis`](DateTime::timestamp_millis).
762    ///
763    /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
764    /// [`TimeZone::timestamp_millis_opt`] or [`DateTime::with_timezone`].
765    ///
766    /// # Errors
767    ///
768    /// Returns `None` on out-of-range number of milliseconds, otherwise returns `Some(DateTime {...})`.
769    ///
770    /// # Example
771    ///
772    /// ```
773    /// use chrono::DateTime;
774    ///
775    /// let dt = DateTime::from_timestamp_millis(947638923004).expect("invalid timestamp");
776    ///
777    /// assert_eq!(dt.to_string(), "2000-01-12 01:02:03.004 UTC");
778    /// assert_eq!(DateTime::from_timestamp_millis(dt.timestamp_millis()).unwrap(), dt);
779    /// ```
780    #[inline]
781    #[must_use]
782    pub const fn from_timestamp_millis(millis: i64) -> Option<Self> {
783        let secs = millis.div_euclid(1000);
784        let nsecs = millis.rem_euclid(1000) as u32 * 1_000_000;
785        Self::from_timestamp(secs, nsecs)
786    }
787
788    /// Creates a new `DateTime<Utc>` from the number of non-leap microseconds
789    /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
790    ///
791    /// This is guaranteed to round-trip with [`timestamp_micros`](DateTime::timestamp_micros).
792    ///
793    /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
794    /// [`TimeZone::timestamp_micros`] or [`DateTime::with_timezone`].
795    ///
796    /// # Errors
797    ///
798    /// Returns `None` if the number of microseconds would be out of range for a `NaiveDateTime`
799    /// (more than ca. 262,000 years away from common era)
800    ///
801    /// # Example
802    ///
803    /// ```
804    /// use chrono::DateTime;
805    ///
806    /// let timestamp_micros: i64 = 1662921288000000; // Sun, 11 Sep 2022 18:34:48 UTC
807    /// let dt = DateTime::from_timestamp_micros(timestamp_micros);
808    /// assert!(dt.is_some());
809    /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp").timestamp_micros());
810    ///
811    /// // Negative timestamps (before the UNIX epoch) are supported as well.
812    /// let timestamp_micros: i64 = -2208936075000000; // Mon, 1 Jan 1900 14:38:45 UTC
813    /// let dt = DateTime::from_timestamp_micros(timestamp_micros);
814    /// assert!(dt.is_some());
815    /// assert_eq!(timestamp_micros, dt.expect("invalid timestamp").timestamp_micros());
816    /// ```
817    #[inline]
818    #[must_use]
819    pub const fn from_timestamp_micros(micros: i64) -> Option<Self> {
820        let secs = micros.div_euclid(1_000_000);
821        let nsecs = micros.rem_euclid(1_000_000) as u32 * 1000;
822        Self::from_timestamp(secs, nsecs)
823    }
824
825    /// Creates a new [`DateTime<Utc>`] from the number of non-leap nanoseconds
826    /// since January 1, 1970 0:00:00.000 UTC (aka "UNIX timestamp").
827    ///
828    /// This is guaranteed to round-trip with [`timestamp_nanos`](DateTime::timestamp_nanos).
829    ///
830    /// If you need to create a `DateTime` with a [`TimeZone`] different from [`Utc`], use
831    /// [`TimeZone::timestamp_nanos`] or [`DateTime::with_timezone`].
832    ///
833    /// The UNIX epoch starts on midnight, January 1, 1970, UTC.
834    ///
835    /// An `i64` with nanosecond precision can span a range of ~584 years. Because all values can
836    /// be represented as a `DateTime` this method never fails.
837    ///
838    /// # Example
839    ///
840    /// ```
841    /// use chrono::DateTime;
842    ///
843    /// let timestamp_nanos: i64 = 1662921288_000_000_000; // Sun, 11 Sep 2022 18:34:48 UTC
844    /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos);
845    /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap());
846    ///
847    /// // Negative timestamps (before the UNIX epoch) are supported as well.
848    /// let timestamp_nanos: i64 = -2208936075_000_000_000; // Mon, 1 Jan 1900 14:38:45 UTC
849    /// let dt = DateTime::from_timestamp_nanos(timestamp_nanos);
850    /// assert_eq!(timestamp_nanos, dt.timestamp_nanos_opt().unwrap());
851    /// ```
852    #[inline]
853    #[must_use]
854    pub const fn from_timestamp_nanos(nanos: i64) -> Self {
855        let secs = nanos.div_euclid(1_000_000_000);
856        let nsecs = nanos.rem_euclid(1_000_000_000) as u32;
857        expect(Self::from_timestamp(secs, nsecs), "timestamp in nanos is always in range")
858    }
859
860    /// The Unix Epoch, 1970-01-01 00:00:00 UTC.
861    pub const UNIX_EPOCH: Self = Self { datetime: NaiveDateTime::UNIX_EPOCH, offset: Utc };
862}
863
864impl Default for DateTime<Utc> {
865    fn default() -> Self {
866        Utc.from_utc_datetime(&NaiveDateTime::default())
867    }
868}
869
870#[cfg(feature = "clock")]
871impl Default for DateTime<Local> {
872    fn default() -> Self {
873        Local.from_utc_datetime(&NaiveDateTime::default())
874    }
875}
876
877impl Default for DateTime<FixedOffset> {
878    fn default() -> Self {
879        FixedOffset::west_opt(0).unwrap().from_utc_datetime(&NaiveDateTime::default())
880    }
881}
882
883/// Convert a `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance.
884impl From<DateTime<Utc>> for DateTime<FixedOffset> {
885    /// Convert this `DateTime<Utc>` instance into a `DateTime<FixedOffset>` instance.
886    ///
887    /// Conversion is done via [`DateTime::with_timezone`]. Note that the converted value returned by
888    /// this will be created with a fixed timezone offset of 0.
889    fn from(src: DateTime<Utc>) -> Self {
890        src.with_timezone(&FixedOffset::east_opt(0).unwrap())
891    }
892}
893
894/// Convert a `DateTime<Utc>` instance into a `DateTime<Local>` instance.
895#[cfg(feature = "clock")]
896impl From<DateTime<Utc>> for DateTime<Local> {
897    /// Convert this `DateTime<Utc>` instance into a `DateTime<Local>` instance.
898    ///
899    /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in timezones.
900    fn from(src: DateTime<Utc>) -> Self {
901        src.with_timezone(&Local)
902    }
903}
904
905/// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance.
906impl From<DateTime<FixedOffset>> for DateTime<Utc> {
907    /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Utc>` instance.
908    ///
909    /// Conversion is performed via [`DateTime::with_timezone`], accounting for the timezone
910    /// difference.
911    fn from(src: DateTime<FixedOffset>) -> Self {
912        src.with_timezone(&Utc)
913    }
914}
915
916/// Convert a `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance.
917#[cfg(feature = "clock")]
918impl From<DateTime<FixedOffset>> for DateTime<Local> {
919    /// Convert this `DateTime<FixedOffset>` instance into a `DateTime<Local>` instance.
920    ///
921    /// Conversion is performed via [`DateTime::with_timezone`]. Returns the equivalent value in local
922    /// time.
923    fn from(src: DateTime<FixedOffset>) -> Self {
924        src.with_timezone(&Local)
925    }
926}
927
928/// Convert a `DateTime<Local>` instance into a `DateTime<Utc>` instance.
929#[cfg(feature = "clock")]
930impl From<DateTime<Local>> for DateTime<Utc> {
931    /// Convert this `DateTime<Local>` instance into a `DateTime<Utc>` instance.
932    ///
933    /// Conversion is performed via [`DateTime::with_timezone`], accounting for the difference in
934    /// timezones.
935    fn from(src: DateTime<Local>) -> Self {
936        src.with_timezone(&Utc)
937    }
938}
939
940/// Convert a `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance.
941#[cfg(feature = "clock")]
942impl From<DateTime<Local>> for DateTime<FixedOffset> {
943    /// Convert this `DateTime<Local>` instance into a `DateTime<FixedOffset>` instance.
944    ///
945    /// Conversion is performed via [`DateTime::with_timezone`].
946    fn from(src: DateTime<Local>) -> Self {
947        src.with_timezone(&src.offset().fix())
948    }
949}
950
951/// Maps the local datetime to other datetime with given conversion function.
952fn map_local<Tz: TimeZone, F>(dt: &DateTime<Tz>, mut f: F) -> Option<DateTime<Tz>>
953where
954    F: FnMut(NaiveDateTime) -> Option<NaiveDateTime>,
955{
956    f(dt.overflowing_naive_local())
957        .and_then(|datetime| dt.timezone().from_local_datetime(&datetime).single())
958        .filter(|dt| dt >= &DateTime::<Utc>::MIN_UTC && dt <= &DateTime::<Utc>::MAX_UTC)
959}
960
961impl DateTime<FixedOffset> {
962    /// Parses an RFC 2822 date-and-time string into a `DateTime<FixedOffset>` value.
963    ///
964    /// This parses valid RFC 2822 datetime strings (such as `Tue, 1 Jul 2003 10:52:37 +0200`)
965    /// and returns a new [`DateTime`] instance with the parsed timezone as the [`FixedOffset`].
966    ///
967    /// RFC 2822 is the internet message standard that specifies the representation of times in HTTP
968    /// and email headers. It is the 2001 revision of RFC 822, and is itself revised as RFC 5322 in
969    /// 2008.
970    ///
971    /// # Support for the obsolete date format
972    ///
973    /// - A 2-digit year is interpreted to be a year in 1950-2049.
974    /// - The standard allows comments and whitespace between many of the tokens. See [4.3] and
975    ///   [Appendix A.5]
976    /// - Single letter 'military' time zone names are parsed as a `-0000` offset.
977    ///   They were defined with the wrong sign in RFC 822 and corrected in RFC 2822. But because
978    ///   the meaning is now ambiguous, the standard says they should be be considered as `-0000`
979    ///   unless there is out-of-band information confirming their meaning.
980    ///   The exception is `Z`, which remains identical to `+0000`.
981    ///
982    /// [4.3]: https://www.rfc-editor.org/rfc/rfc2822#section-4.3
983    /// [Appendix A.5]: https://www.rfc-editor.org/rfc/rfc2822#appendix-A.5
984    ///
985    /// # Example
986    ///
987    /// ```
988    /// # use chrono::{DateTime, FixedOffset, TimeZone};
989    /// assert_eq!(
990    ///     DateTime::parse_from_rfc2822("Wed, 18 Feb 2015 23:16:09 GMT").unwrap(),
991    ///     FixedOffset::east_opt(0).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap()
992    /// );
993    /// ```
994    pub fn parse_from_rfc2822(s: &str) -> ParseResult<DateTime<FixedOffset>> {
995        const ITEMS: &[Item<'static>] = &[Item::Fixed(Fixed::RFC2822)];
996        let mut parsed = Parsed::new();
997        parse(&mut parsed, s, ITEMS.iter())?;
998        parsed.to_datetime()
999    }
1000
1001    /// Parses an RFC 3339 date-and-time string into a `DateTime<FixedOffset>` value.
1002    ///
1003    /// Parses all valid RFC 3339 values (as well as the subset of valid ISO 8601 values that are
1004    /// also valid RFC 3339 date-and-time values) and returns a new [`DateTime`] with a
1005    /// [`FixedOffset`] corresponding to the parsed timezone. While RFC 3339 values come in a wide
1006    /// variety of shapes and sizes, `1996-12-19T16:39:57-08:00` is an example of the most commonly
1007    /// encountered variety of RFC 3339 formats.
1008    ///
1009    /// Why isn't this named `parse_from_iso8601`? That's because ISO 8601 allows representing
1010    /// values in a wide range of formats, only some of which represent actual date-and-time
1011    /// instances (rather than periods, ranges, dates, or times). Some valid ISO 8601 values are
1012    /// also simultaneously valid RFC 3339 values, but not all RFC 3339 values are valid ISO 8601
1013    /// values (or the other way around).
1014    pub fn parse_from_rfc3339(s: &str) -> ParseResult<DateTime<FixedOffset>> {
1015        let mut parsed = Parsed::new();
1016        let (s, _) = parse_rfc3339(&mut parsed, s)?;
1017        if !s.is_empty() {
1018            return Err(TOO_LONG);
1019        }
1020        parsed.to_datetime()
1021    }
1022
1023    /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value.
1024    ///
1025    /// Note that this method *requires a timezone* in the input string. See
1026    /// [`NaiveDateTime::parse_from_str`](./naive/struct.NaiveDateTime.html#method.parse_from_str)
1027    /// for a version that does not require a timezone in the to-be-parsed str. The returned
1028    /// [`DateTime`] value will have a [`FixedOffset`] reflecting the parsed timezone.
1029    ///
1030    /// See the [`format::strftime` module](crate::format::strftime) for supported format
1031    /// sequences.
1032    ///
1033    /// # Example
1034    ///
1035    /// ```rust
1036    /// use chrono::{DateTime, FixedOffset, NaiveDate, TimeZone};
1037    ///
1038    /// let dt = DateTime::parse_from_str("1983 Apr 13 12:09:14.274 +0000", "%Y %b %d %H:%M:%S%.3f %z");
1039    /// assert_eq!(
1040    ///     dt,
1041    ///     Ok(FixedOffset::east_opt(0)
1042    ///         .unwrap()
1043    ///         .from_local_datetime(
1044    ///             &NaiveDate::from_ymd_opt(1983, 4, 13)
1045    ///                 .unwrap()
1046    ///                 .and_hms_milli_opt(12, 9, 14, 274)
1047    ///                 .unwrap()
1048    ///         )
1049    ///         .unwrap())
1050    /// );
1051    /// ```
1052    pub fn parse_from_str(s: &str, fmt: &str) -> ParseResult<DateTime<FixedOffset>> {
1053        let mut parsed = Parsed::new();
1054        parse(&mut parsed, s, StrftimeItems::new(fmt))?;
1055        parsed.to_datetime()
1056    }
1057
1058    /// Parses a string from a user-specified format into a `DateTime<FixedOffset>` value, and a
1059    /// slice with the remaining portion of the string.
1060    ///
1061    /// Note that this method *requires a timezone* in the input string. See
1062    /// [`NaiveDateTime::parse_and_remainder`] for a version that does not
1063    /// require a timezone in `s`. The returned [`DateTime`] value will have a [`FixedOffset`]
1064    /// reflecting the parsed timezone.
1065    ///
1066    /// See the [`format::strftime` module](./format/strftime/index.html) for supported format
1067    /// sequences.
1068    ///
1069    /// Similar to [`parse_from_str`](#method.parse_from_str).
1070    ///
1071    /// # Example
1072    ///
1073    /// ```rust
1074    /// # use chrono::{DateTime, FixedOffset, TimeZone};
1075    /// let (datetime, remainder) = DateTime::parse_and_remainder(
1076    ///     "2015-02-18 23:16:09 +0200 trailing text",
1077    ///     "%Y-%m-%d %H:%M:%S %z",
1078    /// )
1079    /// .unwrap();
1080    /// assert_eq!(
1081    ///     datetime,
1082    ///     FixedOffset::east_opt(2 * 3600).unwrap().with_ymd_and_hms(2015, 2, 18, 23, 16, 9).unwrap()
1083    /// );
1084    /// assert_eq!(remainder, " trailing text");
1085    /// ```
1086    pub fn parse_and_remainder<'a>(
1087        s: &'a str,
1088        fmt: &str,
1089    ) -> ParseResult<(DateTime<FixedOffset>, &'a str)> {
1090        let mut parsed = Parsed::new();
1091        let remainder = parse_and_remainder(&mut parsed, s, StrftimeItems::new(fmt))?;
1092        parsed.to_datetime().map(|d| (d, remainder))
1093    }
1094}
1095
1096impl<Tz: TimeZone> DateTime<Tz>
1097where
1098    Tz::Offset: fmt::Display,
1099{
1100    /// Formats the combined date and time with the specified formatting items.
1101    #[cfg(feature = "alloc")]
1102    #[inline]
1103    #[must_use]
1104    pub fn format_with_items<'a, I, B>(&self, items: I) -> DelayedFormat<I>
1105    where
1106        I: Iterator<Item = B> + Clone,
1107        B: Borrow<Item<'a>>,
1108    {
1109        let local = self.overflowing_naive_local();
1110        DelayedFormat::new_with_offset(Some(local.date()), Some(local.time()), &self.offset, items)
1111    }
1112
1113    /// Formats the combined date and time per the specified format string.
1114    ///
1115    /// See the [`crate::format::strftime`] module for the supported escape sequences.
1116    ///
1117    /// # Example
1118    /// ```rust
1119    /// use chrono::prelude::*;
1120    ///
1121    /// let date_time: DateTime<Utc> = Utc.with_ymd_and_hms(2017, 04, 02, 12, 50, 32).unwrap();
1122    /// let formatted = format!("{}", date_time.format("%d/%m/%Y %H:%M"));
1123    /// assert_eq!(formatted, "02/04/2017 12:50");
1124    /// ```
1125    #[cfg(feature = "alloc")]
1126    #[inline]
1127    #[must_use]
1128    pub fn format<'a>(&self, fmt: &'a str) -> DelayedFormat<StrftimeItems<'a>> {
1129        self.format_with_items(StrftimeItems::new(fmt))
1130    }
1131
1132    /// Formats the combined date and time with the specified formatting items and locale.
1133    #[cfg(all(feature = "unstable-locales", feature = "alloc"))]
1134    #[inline]
1135    #[must_use]
1136    pub fn format_localized_with_items<'a, I, B>(
1137        &self,
1138        items: I,
1139        locale: Locale,
1140    ) -> DelayedFormat<I>
1141    where
1142        I: Iterator<Item = B> + Clone,
1143        B: Borrow<Item<'a>>,
1144    {
1145        let local = self.overflowing_naive_local();
1146        DelayedFormat::new_with_offset_and_locale(
1147            Some(local.date()),
1148            Some(local.time()),
1149            &self.offset,
1150            items,
1151            locale,
1152        )
1153    }
1154
1155    /// Formats the combined date and time per the specified format string and
1156    /// locale.
1157    ///
1158    /// See the [`crate::format::strftime`] module on the supported escape
1159    /// sequences.
1160    #[cfg(all(feature = "unstable-locales", feature = "alloc"))]
1161    #[inline]
1162    #[must_use]
1163    pub fn format_localized<'a>(
1164        &self,
1165        fmt: &'a str,
1166        locale: Locale,
1167    ) -> DelayedFormat<StrftimeItems<'a>> {
1168        self.format_localized_with_items(StrftimeItems::new_with_locale(fmt, locale), locale)
1169    }
1170}
1171
1172impl<Tz: TimeZone> Datelike for DateTime<Tz> {
1173    #[inline]
1174    fn year(&self) -> i32 {
1175        self.overflowing_naive_local().year()
1176    }
1177    #[inline]
1178    fn month(&self) -> u32 {
1179        self.overflowing_naive_local().month()
1180    }
1181    #[inline]
1182    fn month0(&self) -> u32 {
1183        self.overflowing_naive_local().month0()
1184    }
1185    #[inline]
1186    fn day(&self) -> u32 {
1187        self.overflowing_naive_local().day()
1188    }
1189    #[inline]
1190    fn day0(&self) -> u32 {
1191        self.overflowing_naive_local().day0()
1192    }
1193    #[inline]
1194    fn ordinal(&self) -> u32 {
1195        self.overflowing_naive_local().ordinal()
1196    }
1197    #[inline]
1198    fn ordinal0(&self) -> u32 {
1199        self.overflowing_naive_local().ordinal0()
1200    }
1201    #[inline]
1202    fn weekday(&self) -> Weekday {
1203        self.overflowing_naive_local().weekday()
1204    }
1205    #[inline]
1206    fn iso_week(&self) -> IsoWeek {
1207        self.overflowing_naive_local().iso_week()
1208    }
1209
1210    #[inline]
1211    /// Makes a new `DateTime` with the year number changed, while keeping the same month and day.
1212    ///
1213    /// See also the [`NaiveDate::with_year`] method.
1214    ///
1215    /// # Errors
1216    ///
1217    /// Returns `None` if:
1218    /// - The resulting date does not exist (February 29 in a non-leap year).
1219    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1220    ///   daylight saving time transition.
1221    /// - The resulting UTC datetime would be out of range.
1222    /// - The resulting local datetime would be out of range (unless the year remains the same).
1223    fn with_year(&self, year: i32) -> Option<DateTime<Tz>> {
1224        map_local(self, |dt| match dt.year() == year {
1225            true => Some(dt),
1226            false => dt.with_year(year),
1227        })
1228    }
1229
1230    /// Makes a new `DateTime` with the month number (starting from 1) changed.
1231    ///
1232    /// Don't combine multiple `Datelike::with_*` methods. The intermediate value may not exist.
1233    ///
1234    /// See also the [`NaiveDate::with_month`] method.
1235    ///
1236    /// # Errors
1237    ///
1238    /// Returns `None` if:
1239    /// - The resulting date does not exist (for example `month(4)` when day of the month is 31).
1240    /// - The value for `month` is invalid.
1241    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1242    ///   daylight saving time transition.
1243    #[inline]
1244    fn with_month(&self, month: u32) -> Option<DateTime<Tz>> {
1245        map_local(self, |datetime| datetime.with_month(month))
1246    }
1247
1248    /// Makes a new `DateTime` with the month number (starting from 0) changed.
1249    ///
1250    /// See also the [`NaiveDate::with_month0`] method.
1251    ///
1252    /// # Errors
1253    ///
1254    /// Returns `None` if:
1255    /// - The resulting date does not exist (for example `month0(3)` when day of the month is 31).
1256    /// - The value for `month0` is invalid.
1257    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1258    ///   daylight saving time transition.
1259    #[inline]
1260    fn with_month0(&self, month0: u32) -> Option<DateTime<Tz>> {
1261        map_local(self, |datetime| datetime.with_month0(month0))
1262    }
1263
1264    /// Makes a new `DateTime` with the day of month (starting from 1) changed.
1265    ///
1266    /// See also the [`NaiveDate::with_day`] method.
1267    ///
1268    /// # Errors
1269    ///
1270    /// Returns `None` if:
1271    /// - The resulting date does not exist (for example `day(31)` in April).
1272    /// - The value for `day` is invalid.
1273    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1274    ///   daylight saving time transition.
1275    #[inline]
1276    fn with_day(&self, day: u32) -> Option<DateTime<Tz>> {
1277        map_local(self, |datetime| datetime.with_day(day))
1278    }
1279
1280    /// Makes a new `DateTime` with the day of month (starting from 0) changed.
1281    ///
1282    /// See also the [`NaiveDate::with_day0`] method.
1283    ///
1284    /// # Errors
1285    ///
1286    /// Returns `None` if:
1287    /// - The resulting date does not exist (for example `day(30)` in April).
1288    /// - The value for `day0` is invalid.
1289    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1290    ///   daylight saving time transition.
1291    #[inline]
1292    fn with_day0(&self, day0: u32) -> Option<DateTime<Tz>> {
1293        map_local(self, |datetime| datetime.with_day0(day0))
1294    }
1295
1296    /// Makes a new `DateTime` with the day of year (starting from 1) changed.
1297    ///
1298    /// See also the [`NaiveDate::with_ordinal`] method.
1299    ///
1300    /// # Errors
1301    ///
1302    /// Returns `None` if:
1303    /// - The resulting date does not exist (`with_ordinal(366)` in a non-leap year).
1304    /// - The value for `ordinal` is invalid.
1305    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1306    ///   daylight saving time transition.
1307    #[inline]
1308    fn with_ordinal(&self, ordinal: u32) -> Option<DateTime<Tz>> {
1309        map_local(self, |datetime| datetime.with_ordinal(ordinal))
1310    }
1311
1312    /// Makes a new `DateTime` with the day of year (starting from 0) changed.
1313    ///
1314    /// See also the [`NaiveDate::with_ordinal0`] method.
1315    ///
1316    /// # Errors
1317    ///
1318    /// Returns `None` if:
1319    /// - The resulting date does not exist (`with_ordinal0(365)` in a non-leap year).
1320    /// - The value for `ordinal0` is invalid.
1321    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1322    ///   daylight saving time transition.
1323    #[inline]
1324    fn with_ordinal0(&self, ordinal0: u32) -> Option<DateTime<Tz>> {
1325        map_local(self, |datetime| datetime.with_ordinal0(ordinal0))
1326    }
1327}
1328
1329impl<Tz: TimeZone> Timelike for DateTime<Tz> {
1330    #[inline]
1331    fn hour(&self) -> u32 {
1332        self.overflowing_naive_local().hour()
1333    }
1334    #[inline]
1335    fn minute(&self) -> u32 {
1336        self.overflowing_naive_local().minute()
1337    }
1338    #[inline]
1339    fn second(&self) -> u32 {
1340        self.overflowing_naive_local().second()
1341    }
1342    #[inline]
1343    fn nanosecond(&self) -> u32 {
1344        self.overflowing_naive_local().nanosecond()
1345    }
1346
1347    /// Makes a new `DateTime` with the hour number changed.
1348    ///
1349    /// See also the [`NaiveTime::with_hour`] method.
1350    ///
1351    /// # Errors
1352    ///
1353    /// Returns `None` if:
1354    /// - The value for `hour` is invalid.
1355    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1356    ///   daylight saving time transition.
1357    #[inline]
1358    fn with_hour(&self, hour: u32) -> Option<DateTime<Tz>> {
1359        map_local(self, |datetime| datetime.with_hour(hour))
1360    }
1361
1362    /// Makes a new `DateTime` with the minute number changed.
1363    ///
1364    /// See also the [`NaiveTime::with_minute`] method.
1365    ///
1366    /// # Errors
1367    ///
1368    /// - The value for `minute` is invalid.
1369    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1370    ///   daylight saving time transition.
1371    #[inline]
1372    fn with_minute(&self, min: u32) -> Option<DateTime<Tz>> {
1373        map_local(self, |datetime| datetime.with_minute(min))
1374    }
1375
1376    /// Makes a new `DateTime` with the second number changed.
1377    ///
1378    /// As with the [`second`](#method.second) method,
1379    /// the input range is restricted to 0 through 59.
1380    ///
1381    /// See also the [`NaiveTime::with_second`] method.
1382    ///
1383    /// # Errors
1384    ///
1385    /// Returns `None` if:
1386    /// - The value for `second` is invalid.
1387    /// - The local time at the resulting date does not exist or is ambiguous, for example during a
1388    ///   daylight saving time transition.
1389    #[inline]
1390    fn with_second(&self, sec: u32) -> Option<DateTime<Tz>> {
1391        map_local(self, |datetime| datetime.with_second(sec))
1392    }
1393
1394    /// Makes a new `DateTime` with nanoseconds since the whole non-leap second changed.
1395    ///
1396    /// Returns `None` when the resulting `NaiveDateTime` would be invalid.
1397    /// As with the [`NaiveDateTime::nanosecond`] method,
1398    /// the input range can exceed 1,000,000,000 for leap seconds.
1399    ///
1400    /// See also the [`NaiveTime::with_nanosecond`] method.
1401    ///
1402    /// # Errors
1403    ///
1404    /// Returns `None` if `nanosecond >= 2,000,000,000`.
1405    #[inline]
1406    fn with_nanosecond(&self, nano: u32) -> Option<DateTime<Tz>> {
1407        map_local(self, |datetime| datetime.with_nanosecond(nano))
1408    }
1409}
1410
1411// We don't store a field with the `Tz` type, so it doesn't need to influence whether `DateTime` can
1412// be `Copy`. Implement it manually if the two types we do have are `Copy`.
1413impl<Tz: TimeZone> Copy for DateTime<Tz>
1414where
1415    <Tz as TimeZone>::Offset: Copy,
1416    NaiveDateTime: Copy,
1417{
1418}
1419
1420impl<Tz: TimeZone, Tz2: TimeZone> PartialEq<DateTime<Tz2>> for DateTime<Tz> {
1421    fn eq(&self, other: &DateTime<Tz2>) -> bool {
1422        self.datetime == other.datetime
1423    }
1424}
1425
1426impl<Tz: TimeZone> Eq for DateTime<Tz> {}
1427
1428impl<Tz: TimeZone, Tz2: TimeZone> PartialOrd<DateTime<Tz2>> for DateTime<Tz> {
1429    /// Compare two DateTimes based on their true time, ignoring time zones
1430    ///
1431    /// # Example
1432    ///
1433    /// ```
1434    /// use chrono::prelude::*;
1435    ///
1436    /// let earlier = Utc
1437    ///     .with_ymd_and_hms(2015, 5, 15, 2, 0, 0)
1438    ///     .unwrap()
1439    ///     .with_timezone(&FixedOffset::west_opt(1 * 3600).unwrap());
1440    /// let later = Utc
1441    ///     .with_ymd_and_hms(2015, 5, 15, 3, 0, 0)
1442    ///     .unwrap()
1443    ///     .with_timezone(&FixedOffset::west_opt(5 * 3600).unwrap());
1444    ///
1445    /// assert_eq!(earlier.to_string(), "2015-05-15 01:00:00 -01:00");
1446    /// assert_eq!(later.to_string(), "2015-05-14 22:00:00 -05:00");
1447    ///
1448    /// assert!(later > earlier);
1449    /// ```
1450    fn partial_cmp(&self, other: &DateTime<Tz2>) -> Option<Ordering> {
1451        self.datetime.partial_cmp(&other.datetime)
1452    }
1453}
1454
1455impl<Tz: TimeZone> Ord for DateTime<Tz> {
1456    fn cmp(&self, other: &DateTime<Tz>) -> Ordering {
1457        self.datetime.cmp(&other.datetime)
1458    }
1459}
1460
1461impl<Tz: TimeZone> hash::Hash for DateTime<Tz> {
1462    fn hash<H: hash::Hasher>(&self, state: &mut H) {
1463        self.datetime.hash(state)
1464    }
1465}
1466
1467/// Add `TimeDelta` to `DateTime`.
1468///
1469/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1470/// second ever**, except when the `NaiveDateTime` itself represents a leap  second in which case
1471/// the assumption becomes that **there is exactly a single leap second ever**.
1472///
1473/// # Panics
1474///
1475/// Panics if the resulting date would be out of range.
1476/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1477impl<Tz: TimeZone> Add<TimeDelta> for DateTime<Tz> {
1478    type Output = DateTime<Tz>;
1479
1480    #[inline]
1481    fn add(self, rhs: TimeDelta) -> DateTime<Tz> {
1482        self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed")
1483    }
1484}
1485
1486/// Add `std::time::Duration` to `DateTime`.
1487///
1488/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1489/// second ever**, except when the `NaiveDateTime` itself represents a leap  second in which case
1490/// the assumption becomes that **there is exactly a single leap second ever**.
1491///
1492/// # Panics
1493///
1494/// Panics if the resulting date would be out of range.
1495/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1496impl<Tz: TimeZone> Add<Duration> for DateTime<Tz> {
1497    type Output = DateTime<Tz>;
1498
1499    #[inline]
1500    fn add(self, rhs: Duration) -> DateTime<Tz> {
1501        let rhs = TimeDelta::from_std(rhs)
1502            .expect("overflow converting from core::time::Duration to TimeDelta");
1503        self.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed")
1504    }
1505}
1506
1507/// Add-assign `chrono::Duration` to `DateTime`.
1508///
1509/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1510/// second ever**, except when the `NaiveDateTime` itself represents a leap  second in which case
1511/// the assumption becomes that **there is exactly a single leap second ever**.
1512///
1513/// # Panics
1514///
1515/// Panics if the resulting date would be out of range.
1516/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1517impl<Tz: TimeZone> AddAssign<TimeDelta> for DateTime<Tz> {
1518    #[inline]
1519    fn add_assign(&mut self, rhs: TimeDelta) {
1520        let datetime =
1521            self.datetime.checked_add_signed(rhs).expect("`DateTime + TimeDelta` overflowed");
1522        let tz = self.timezone();
1523        *self = tz.from_utc_datetime(&datetime);
1524    }
1525}
1526
1527/// Add-assign `std::time::Duration` to `DateTime`.
1528///
1529/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1530/// second ever**, except when the `NaiveDateTime` itself represents a leap  second in which case
1531/// the assumption becomes that **there is exactly a single leap second ever**.
1532///
1533/// # Panics
1534///
1535/// Panics if the resulting date would be out of range.
1536/// Consider using [`DateTime<Tz>::checked_add_signed`] to get an `Option` instead.
1537impl<Tz: TimeZone> AddAssign<Duration> for DateTime<Tz> {
1538    #[inline]
1539    fn add_assign(&mut self, rhs: Duration) {
1540        let rhs = TimeDelta::from_std(rhs)
1541            .expect("overflow converting from core::time::Duration to TimeDelta");
1542        *self += rhs;
1543    }
1544}
1545
1546/// Add `FixedOffset` to the datetime value of `DateTime` (offset remains unchanged).
1547///
1548/// # Panics
1549///
1550/// Panics if the resulting date would be out of range.
1551impl<Tz: TimeZone> Add<FixedOffset> for DateTime<Tz> {
1552    type Output = DateTime<Tz>;
1553
1554    #[inline]
1555    fn add(mut self, rhs: FixedOffset) -> DateTime<Tz> {
1556        self.datetime =
1557            self.naive_utc().checked_add_offset(rhs).expect("`DateTime + FixedOffset` overflowed");
1558        self
1559    }
1560}
1561
1562/// Add `Months` to `DateTime`.
1563///
1564/// The result will be clamped to valid days in the resulting month, see `checked_add_months` for
1565/// details.
1566///
1567/// # Panics
1568///
1569/// Panics if:
1570/// - The resulting date would be out of range.
1571/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1572///   daylight saving time transition.
1573///
1574/// Strongly consider using [`DateTime<Tz>::checked_add_months`] to get an `Option` instead.
1575impl<Tz: TimeZone> Add<Months> for DateTime<Tz> {
1576    type Output = DateTime<Tz>;
1577
1578    fn add(self, rhs: Months) -> Self::Output {
1579        self.checked_add_months(rhs).expect("`DateTime + Months` out of range")
1580    }
1581}
1582
1583/// Subtract `TimeDelta` from `DateTime`.
1584///
1585/// This is the same as the addition with a negated `TimeDelta`.
1586///
1587/// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap
1588/// second ever**, except when the `DateTime` itself represents a leap second in which case
1589/// the assumption becomes that **there is exactly a single leap second ever**.
1590///
1591/// # Panics
1592///
1593/// Panics if the resulting date would be out of range.
1594/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1595impl<Tz: TimeZone> Sub<TimeDelta> for DateTime<Tz> {
1596    type Output = DateTime<Tz>;
1597
1598    #[inline]
1599    fn sub(self, rhs: TimeDelta) -> DateTime<Tz> {
1600        self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed")
1601    }
1602}
1603
1604/// Subtract `std::time::Duration` from `DateTime`.
1605///
1606/// As a part of Chrono's [leap second handling] the subtraction assumes that **there is no leap
1607/// second ever**, except when the `DateTime` itself represents a leap second in which case
1608/// the assumption becomes that **there is exactly a single leap second ever**.
1609///
1610/// # Panics
1611///
1612/// Panics if the resulting date would be out of range.
1613/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1614impl<Tz: TimeZone> Sub<Duration> for DateTime<Tz> {
1615    type Output = DateTime<Tz>;
1616
1617    #[inline]
1618    fn sub(self, rhs: Duration) -> DateTime<Tz> {
1619        let rhs = TimeDelta::from_std(rhs)
1620            .expect("overflow converting from core::time::Duration to TimeDelta");
1621        self.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed")
1622    }
1623}
1624
1625/// Subtract-assign `TimeDelta` from `DateTime`.
1626///
1627/// This is the same as the addition with a negated `TimeDelta`.
1628///
1629/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1630/// second ever**, except when the `DateTime` itself represents a leap  second in which case
1631/// the assumption becomes that **there is exactly a single leap second ever**.
1632///
1633/// # Panics
1634///
1635/// Panics if the resulting date would be out of range.
1636/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1637impl<Tz: TimeZone> SubAssign<TimeDelta> for DateTime<Tz> {
1638    #[inline]
1639    fn sub_assign(&mut self, rhs: TimeDelta) {
1640        let datetime =
1641            self.datetime.checked_sub_signed(rhs).expect("`DateTime - TimeDelta` overflowed");
1642        let tz = self.timezone();
1643        *self = tz.from_utc_datetime(&datetime)
1644    }
1645}
1646
1647/// Subtract-assign `std::time::Duration` from `DateTime`.
1648///
1649/// As a part of Chrono's [leap second handling], the addition assumes that **there is no leap
1650/// second ever**, except when the `DateTime` itself represents a leap  second in which case
1651/// the assumption becomes that **there is exactly a single leap second ever**.
1652///
1653/// # Panics
1654///
1655/// Panics if the resulting date would be out of range.
1656/// Consider using [`DateTime<Tz>::checked_sub_signed`] to get an `Option` instead.
1657impl<Tz: TimeZone> SubAssign<Duration> for DateTime<Tz> {
1658    #[inline]
1659    fn sub_assign(&mut self, rhs: Duration) {
1660        let rhs = TimeDelta::from_std(rhs)
1661            .expect("overflow converting from core::time::Duration to TimeDelta");
1662        *self -= rhs;
1663    }
1664}
1665
1666/// Subtract `FixedOffset` from the datetime value of `DateTime` (offset remains unchanged).
1667///
1668/// # Panics
1669///
1670/// Panics if the resulting date would be out of range.
1671impl<Tz: TimeZone> Sub<FixedOffset> for DateTime<Tz> {
1672    type Output = DateTime<Tz>;
1673
1674    #[inline]
1675    fn sub(mut self, rhs: FixedOffset) -> DateTime<Tz> {
1676        self.datetime =
1677            self.naive_utc().checked_sub_offset(rhs).expect("`DateTime - FixedOffset` overflowed");
1678        self
1679    }
1680}
1681
1682/// Subtract `Months` from `DateTime`.
1683///
1684/// The result will be clamped to valid days in the resulting month, see
1685/// [`DateTime<Tz>::checked_sub_months`] for details.
1686///
1687/// # Panics
1688///
1689/// Panics if:
1690/// - The resulting date would be out of range.
1691/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1692///   daylight saving time transition.
1693///
1694/// Strongly consider using [`DateTime<Tz>::checked_sub_months`] to get an `Option` instead.
1695impl<Tz: TimeZone> Sub<Months> for DateTime<Tz> {
1696    type Output = DateTime<Tz>;
1697
1698    fn sub(self, rhs: Months) -> Self::Output {
1699        self.checked_sub_months(rhs).expect("`DateTime - Months` out of range")
1700    }
1701}
1702
1703impl<Tz: TimeZone> Sub<DateTime<Tz>> for DateTime<Tz> {
1704    type Output = TimeDelta;
1705
1706    #[inline]
1707    fn sub(self, rhs: DateTime<Tz>) -> TimeDelta {
1708        self.signed_duration_since(rhs)
1709    }
1710}
1711
1712impl<Tz: TimeZone> Sub<&DateTime<Tz>> for DateTime<Tz> {
1713    type Output = TimeDelta;
1714
1715    #[inline]
1716    fn sub(self, rhs: &DateTime<Tz>) -> TimeDelta {
1717        self.signed_duration_since(rhs)
1718    }
1719}
1720
1721/// Add `Days` to `NaiveDateTime`.
1722///
1723/// # Panics
1724///
1725/// Panics if:
1726/// - The resulting date would be out of range.
1727/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1728///   daylight saving time transition.
1729///
1730/// Strongly consider using `DateTime<Tz>::checked_add_days` to get an `Option` instead.
1731impl<Tz: TimeZone> Add<Days> for DateTime<Tz> {
1732    type Output = DateTime<Tz>;
1733
1734    fn add(self, days: Days) -> Self::Output {
1735        self.checked_add_days(days).expect("`DateTime + Days` out of range")
1736    }
1737}
1738
1739/// Subtract `Days` from `DateTime`.
1740///
1741/// # Panics
1742///
1743/// Panics if:
1744/// - The resulting date would be out of range.
1745/// - The local time at the resulting date does not exist or is ambiguous, for example during a
1746///   daylight saving time transition.
1747///
1748/// Strongly consider using `DateTime<Tz>::checked_sub_days` to get an `Option` instead.
1749impl<Tz: TimeZone> Sub<Days> for DateTime<Tz> {
1750    type Output = DateTime<Tz>;
1751
1752    fn sub(self, days: Days) -> Self::Output {
1753        self.checked_sub_days(days).expect("`DateTime - Days` out of range")
1754    }
1755}
1756
1757impl<Tz: TimeZone> fmt::Debug for DateTime<Tz> {
1758    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1759        self.overflowing_naive_local().fmt(f)?;
1760        self.offset.fmt(f)
1761    }
1762}
1763
1764// `fmt::Debug` is hand implemented for the `rkyv::Archive` variant of `DateTime` because
1765// deriving a trait recursively does not propagate trait defined associated types with their own
1766// constraints:
1767// In our case `<<Tz as offset::TimeZone>::Offset as Archive>::Archived`
1768// cannot be formatted using `{:?}` because it doesn't implement `Debug`.
1769// See below for further discussion:
1770// * https://github.com/rust-lang/rust/issues/26925
1771// * https://github.com/rkyv/rkyv/issues/333
1772// * https://github.com/dtolnay/syn/issues/370
1773#[cfg(feature = "rkyv-validation")]
1774impl<Tz: TimeZone> fmt::Debug for ArchivedDateTime<Tz>
1775where
1776    Tz: Archive,
1777    <Tz as Archive>::Archived: fmt::Debug,
1778    <<Tz as TimeZone>::Offset as Archive>::Archived: fmt::Debug,
1779    <Tz as TimeZone>::Offset: fmt::Debug + Archive,
1780{
1781    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1782        f.debug_struct("ArchivedDateTime")
1783            .field("datetime", &self.datetime)
1784            .field("offset", &self.offset)
1785            .finish()
1786    }
1787}
1788
1789impl<Tz: TimeZone> fmt::Display for DateTime<Tz>
1790where
1791    Tz::Offset: fmt::Display,
1792{
1793    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
1794        self.overflowing_naive_local().fmt(f)?;
1795        f.write_char(' ')?;
1796        self.offset.fmt(f)
1797    }
1798}
1799
1800/// Accepts a relaxed form of RFC3339.
1801/// A space or a 'T' are accepted as the separator between the date and time
1802/// parts.
1803///
1804/// All of these examples are equivalent:
1805/// ```
1806/// # use chrono::{DateTime, Utc};
1807/// "2012-12-12T12:12:12Z".parse::<DateTime<Utc>>()?;
1808/// "2012-12-12 12:12:12Z".parse::<DateTime<Utc>>()?;
1809/// "2012-12-12 12:12:12+0000".parse::<DateTime<Utc>>()?;
1810/// "2012-12-12 12:12:12+00:00".parse::<DateTime<Utc>>()?;
1811/// # Ok::<(), chrono::ParseError>(())
1812/// ```
1813impl str::FromStr for DateTime<Utc> {
1814    type Err = ParseError;
1815
1816    fn from_str(s: &str) -> ParseResult<DateTime<Utc>> {
1817        s.parse::<DateTime<FixedOffset>>().map(|dt| dt.with_timezone(&Utc))
1818    }
1819}
1820
1821/// Accepts a relaxed form of RFC3339.
1822/// A space or a 'T' are accepted as the separator between the date and time
1823/// parts.
1824///
1825/// All of these examples are equivalent:
1826/// ```
1827/// # use chrono::{DateTime, Local};
1828/// "2012-12-12T12:12:12Z".parse::<DateTime<Local>>()?;
1829/// "2012-12-12 12:12:12Z".parse::<DateTime<Local>>()?;
1830/// "2012-12-12 12:12:12+0000".parse::<DateTime<Local>>()?;
1831/// "2012-12-12 12:12:12+00:00".parse::<DateTime<Local>>()?;
1832/// # Ok::<(), chrono::ParseError>(())
1833/// ```
1834#[cfg(feature = "clock")]
1835impl str::FromStr for DateTime<Local> {
1836    type Err = ParseError;
1837
1838    fn from_str(s: &str) -> ParseResult<DateTime<Local>> {
1839        s.parse::<DateTime<FixedOffset>>().map(|dt| dt.with_timezone(&Local))
1840    }
1841}
1842
1843#[cfg(feature = "std")]
1844impl From<SystemTime> for DateTime<Utc> {
1845    fn from(t: SystemTime) -> DateTime<Utc> {
1846        let (sec, nsec) = match t.duration_since(UNIX_EPOCH) {
1847            Ok(dur) => (dur.as_secs() as i64, dur.subsec_nanos()),
1848            Err(e) => {
1849                // unlikely but should be handled
1850                let dur = e.duration();
1851                let (sec, nsec) = (dur.as_secs() as i64, dur.subsec_nanos());
1852                if nsec == 0 {
1853                    (-sec, 0)
1854                } else {
1855                    (-sec - 1, 1_000_000_000 - nsec)
1856                }
1857            }
1858        };
1859        Utc.timestamp_opt(sec, nsec).unwrap()
1860    }
1861}
1862
1863#[cfg(feature = "clock")]
1864impl From<SystemTime> for DateTime<Local> {
1865    fn from(t: SystemTime) -> DateTime<Local> {
1866        DateTime::<Utc>::from(t).with_timezone(&Local)
1867    }
1868}
1869
1870#[cfg(feature = "std")]
1871impl<Tz: TimeZone> From<DateTime<Tz>> for SystemTime {
1872    fn from(dt: DateTime<Tz>) -> SystemTime {
1873        let sec = dt.timestamp();
1874        let nsec = dt.timestamp_subsec_nanos();
1875        if sec < 0 {
1876            // unlikely but should be handled
1877            UNIX_EPOCH - Duration::new(-sec as u64, 0) + Duration::new(0, nsec)
1878        } else {
1879            UNIX_EPOCH + Duration::new(sec as u64, nsec)
1880        }
1881    }
1882}
1883
1884#[cfg(all(
1885    target_arch = "wasm32",
1886    feature = "wasmbind",
1887    not(any(target_os = "emscripten", target_os = "wasi"))
1888))]
1889impl From<js_sys::Date> for DateTime<Utc> {
1890    fn from(date: js_sys::Date) -> DateTime<Utc> {
1891        DateTime::<Utc>::from(&date)
1892    }
1893}
1894
1895#[cfg(all(
1896    target_arch = "wasm32",
1897    feature = "wasmbind",
1898    not(any(target_os = "emscripten", target_os = "wasi"))
1899))]
1900impl From<&js_sys::Date> for DateTime<Utc> {
1901    fn from(date: &js_sys::Date) -> DateTime<Utc> {
1902        Utc.timestamp_millis_opt(date.get_time() as i64).unwrap()
1903    }
1904}
1905
1906#[cfg(all(
1907    target_arch = "wasm32",
1908    feature = "wasmbind",
1909    not(any(target_os = "emscripten", target_os = "wasi"))
1910))]
1911impl From<DateTime<Utc>> for js_sys::Date {
1912    /// Converts a `DateTime<Utc>` to a JS `Date`. The resulting value may be lossy,
1913    /// any values that have a millisecond timestamp value greater/less than ±8,640,000,000,000,000
1914    /// (April 20, 271821 BCE ~ September 13, 275760 CE) will become invalid dates in JS.
1915    fn from(date: DateTime<Utc>) -> js_sys::Date {
1916        let js_millis = wasm_bindgen::JsValue::from_f64(date.timestamp_millis() as f64);
1917        js_sys::Date::new(&js_millis)
1918    }
1919}
1920
1921// Note that implementation of Arbitrary cannot be simply derived for DateTime<Tz>, due to
1922// the nontrivial bound <Tz as TimeZone>::Offset: Arbitrary.
1923#[cfg(all(feature = "arbitrary", feature = "std"))]
1924impl<'a, Tz> arbitrary::Arbitrary<'a> for DateTime<Tz>
1925where
1926    Tz: TimeZone,
1927    <Tz as TimeZone>::Offset: arbitrary::Arbitrary<'a>,
1928{
1929    fn arbitrary(u: &mut arbitrary::Unstructured<'a>) -> arbitrary::Result<DateTime<Tz>> {
1930        let datetime = NaiveDateTime::arbitrary(u)?;
1931        let offset = <Tz as TimeZone>::Offset::arbitrary(u)?;
1932        Ok(DateTime::from_naive_utc_and_offset(datetime, offset))
1933    }
1934}
1935
1936/// Number of days between Januari 1, 1970 and December 31, 1 BCE which we define to be day 0.
1937/// 4 full leap year cycles until December 31, 1600     4 * 146097 = 584388
1938/// 1 day until January 1, 1601                                           1
1939/// 369 years until Januari 1, 1970                      369 * 365 = 134685
1940/// of which floor(369 / 4) are leap years          floor(369 / 4) =     92
1941/// except for 1700, 1800 and 1900                                       -3 +
1942///                                                                  --------
1943///                                                                  719163
1944const UNIX_EPOCH_DAY: i64 = 719_163;