tokio/sync/mpsc/
unbounded.rs

1use crate::loom::sync::{atomic::AtomicUsize, Arc};
2use crate::sync::mpsc::chan;
3use crate::sync::mpsc::error::{SendError, TryRecvError};
4
5use std::fmt;
6use std::task::{Context, Poll};
7
8/// Send values to the associated `UnboundedReceiver`.
9///
10/// Instances are created by the [`unbounded_channel`] function.
11pub struct UnboundedSender<T> {
12    chan: chan::Tx<T, Semaphore>,
13}
14
15/// An unbounded sender that does not prevent the channel from being closed.
16///
17/// If all [`UnboundedSender`] instances of a channel were dropped and only
18/// `WeakUnboundedSender` instances remain, the channel is closed.
19///
20/// In order to send messages, the `WeakUnboundedSender` needs to be upgraded using
21/// [`WeakUnboundedSender::upgrade`], which returns `Option<UnboundedSender>`. It returns `None`
22/// if all `UnboundedSender`s have been dropped, and otherwise it returns an `UnboundedSender`.
23///
24/// [`UnboundedSender`]: UnboundedSender
25/// [`WeakUnboundedSender::upgrade`]: WeakUnboundedSender::upgrade
26///
27/// # Examples
28///
29/// ```
30/// use tokio::sync::mpsc::unbounded_channel;
31///
32/// #[tokio::main]
33/// async fn main() {
34///     let (tx, _rx) = unbounded_channel::<i32>();
35///     let tx_weak = tx.downgrade();
36///
37///     // Upgrading will succeed because `tx` still exists.
38///     assert!(tx_weak.upgrade().is_some());
39///
40///     // If we drop `tx`, then it will fail.
41///     drop(tx);
42///     assert!(tx_weak.clone().upgrade().is_none());
43/// }
44/// ```
45pub struct WeakUnboundedSender<T> {
46    chan: Arc<chan::Chan<T, Semaphore>>,
47}
48
49impl<T> Clone for UnboundedSender<T> {
50    fn clone(&self) -> Self {
51        UnboundedSender {
52            chan: self.chan.clone(),
53        }
54    }
55}
56
57impl<T> fmt::Debug for UnboundedSender<T> {
58    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
59        fmt.debug_struct("UnboundedSender")
60            .field("chan", &self.chan)
61            .finish()
62    }
63}
64
65/// Receive values from the associated `UnboundedSender`.
66///
67/// Instances are created by the [`unbounded_channel`] function.
68///
69/// This receiver can be turned into a `Stream` using [`UnboundedReceiverStream`].
70///
71/// [`UnboundedReceiverStream`]: https://docs.rs/tokio-stream/0.1/tokio_stream/wrappers/struct.UnboundedReceiverStream.html
72pub struct UnboundedReceiver<T> {
73    /// The channel receiver
74    chan: chan::Rx<T, Semaphore>,
75}
76
77impl<T> fmt::Debug for UnboundedReceiver<T> {
78    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
79        fmt.debug_struct("UnboundedReceiver")
80            .field("chan", &self.chan)
81            .finish()
82    }
83}
84
85/// Creates an unbounded mpsc channel for communicating between asynchronous
86/// tasks without backpressure.
87///
88/// A `send` on this channel will always succeed as long as the receive half has
89/// not been closed. If the receiver falls behind, messages will be arbitrarily
90/// buffered.
91///
92/// **Note** that the amount of available system memory is an implicit bound to
93/// the channel. Using an `unbounded` channel has the ability of causing the
94/// process to run out of memory. In this case, the process will be aborted.
95pub fn unbounded_channel<T>() -> (UnboundedSender<T>, UnboundedReceiver<T>) {
96    let (tx, rx) = chan::channel(Semaphore(AtomicUsize::new(0)));
97
98    let tx = UnboundedSender::new(tx);
99    let rx = UnboundedReceiver::new(rx);
100
101    (tx, rx)
102}
103
104/// No capacity
105#[derive(Debug)]
106pub(crate) struct Semaphore(pub(crate) AtomicUsize);
107
108impl<T> UnboundedReceiver<T> {
109    pub(crate) fn new(chan: chan::Rx<T, Semaphore>) -> UnboundedReceiver<T> {
110        UnboundedReceiver { chan }
111    }
112
113    /// Receives the next value for this receiver.
114    ///
115    /// This method returns `None` if the channel has been closed and there are
116    /// no remaining messages in the channel's buffer. This indicates that no
117    /// further values can ever be received from this `Receiver`. The channel is
118    /// closed when all senders have been dropped, or when [`close`] is called.
119    ///
120    /// If there are no messages in the channel's buffer, but the channel has
121    /// not yet been closed, this method will sleep until a message is sent or
122    /// the channel is closed.
123    ///
124    /// # Cancel safety
125    ///
126    /// This method is cancel safe. If `recv` is used as the event in a
127    /// [`tokio::select!`](crate::select) statement and some other branch
128    /// completes first, it is guaranteed that no messages were received on this
129    /// channel.
130    ///
131    /// [`close`]: Self::close
132    ///
133    /// # Examples
134    ///
135    /// ```
136    /// use tokio::sync::mpsc;
137    ///
138    /// #[tokio::main]
139    /// async fn main() {
140    ///     let (tx, mut rx) = mpsc::unbounded_channel();
141    ///
142    ///     tokio::spawn(async move {
143    ///         tx.send("hello").unwrap();
144    ///     });
145    ///
146    ///     assert_eq!(Some("hello"), rx.recv().await);
147    ///     assert_eq!(None, rx.recv().await);
148    /// }
149    /// ```
150    ///
151    /// Values are buffered:
152    ///
153    /// ```
154    /// use tokio::sync::mpsc;
155    ///
156    /// #[tokio::main]
157    /// async fn main() {
158    ///     let (tx, mut rx) = mpsc::unbounded_channel();
159    ///
160    ///     tx.send("hello").unwrap();
161    ///     tx.send("world").unwrap();
162    ///
163    ///     assert_eq!(Some("hello"), rx.recv().await);
164    ///     assert_eq!(Some("world"), rx.recv().await);
165    /// }
166    /// ```
167    pub async fn recv(&mut self) -> Option<T> {
168        use std::future::poll_fn;
169
170        poll_fn(|cx| self.poll_recv(cx)).await
171    }
172
173    /// Receives the next values for this receiver and extends `buffer`.
174    ///
175    /// This method extends `buffer` by no more than a fixed number of values
176    /// as specified by `limit`. If `limit` is zero, the function returns
177    /// immediately with `0`. The return value is the number of values added to
178    /// `buffer`.
179    ///
180    /// For `limit > 0`, if there are no messages in the channel's queue,
181    /// but the channel has not yet been closed, this method will sleep
182    /// until a message is sent or the channel is closed.
183    ///
184    /// For non-zero values of `limit`, this method will never return `0` unless
185    /// the channel has been closed and there are no remaining messages in the
186    /// channel's queue. This indicates that no further values can ever be
187    /// received from this `Receiver`. The channel is closed when all senders
188    /// have been dropped, or when [`close`] is called.
189    ///
190    /// The capacity of `buffer` is increased as needed.
191    ///
192    /// # Cancel safety
193    ///
194    /// This method is cancel safe. If `recv_many` is used as the event in a
195    /// [`tokio::select!`](crate::select) statement and some other branch
196    /// completes first, it is guaranteed that no messages were received on this
197    /// channel.
198    ///
199    /// [`close`]: Self::close
200    ///
201    /// # Examples
202    ///
203    /// ```
204    /// use tokio::sync::mpsc;
205    ///
206    /// #[tokio::main]
207    /// async fn main() {
208    ///     let mut buffer: Vec<&str> = Vec::with_capacity(2);
209    ///     let limit = 2;
210    ///     let (tx, mut rx) = mpsc::unbounded_channel();
211    ///     let tx2 = tx.clone();
212    ///     tx2.send("first").unwrap();
213    ///     tx2.send("second").unwrap();
214    ///     tx2.send("third").unwrap();
215    ///
216    ///     // Call `recv_many` to receive up to `limit` (2) values.
217    ///     assert_eq!(2, rx.recv_many(&mut buffer, limit).await);
218    ///     assert_eq!(vec!["first", "second"], buffer);
219    ///
220    ///     // If the buffer is full, the next call to `recv_many`
221    ///     // reserves additional capacity.
222    ///     assert_eq!(1, rx.recv_many(&mut buffer, limit).await);
223    ///
224    ///     tokio::spawn(async move {
225    ///         tx.send("fourth").unwrap();
226    ///     });
227    ///
228    ///     // 'tx' is dropped, but `recv_many`
229    ///     // is guaranteed not to return 0 as the channel
230    ///     // is not yet closed.
231    ///     assert_eq!(1, rx.recv_many(&mut buffer, limit).await);
232    ///     assert_eq!(vec!["first", "second", "third", "fourth"], buffer);
233    ///
234    ///     // Once the last sender is dropped, the channel is
235    ///     // closed and `recv_many` returns 0, capacity unchanged.
236    ///     drop(tx2);
237    ///     assert_eq!(0, rx.recv_many(&mut buffer, limit).await);
238    ///     assert_eq!(vec!["first", "second", "third", "fourth"], buffer);
239    /// }
240    /// ```
241    pub async fn recv_many(&mut self, buffer: &mut Vec<T>, limit: usize) -> usize {
242        use std::future::poll_fn;
243        poll_fn(|cx| self.chan.recv_many(cx, buffer, limit)).await
244    }
245
246    /// Tries to receive the next value for this receiver.
247    ///
248    /// This method returns the [`Empty`] error if the channel is currently
249    /// empty, but there are still outstanding [senders] or [permits].
250    ///
251    /// This method returns the [`Disconnected`] error if the channel is
252    /// currently empty, and there are no outstanding [senders] or [permits].
253    ///
254    /// Unlike the [`poll_recv`] method, this method will never return an
255    /// [`Empty`] error spuriously.
256    ///
257    /// [`Empty`]: crate::sync::mpsc::error::TryRecvError::Empty
258    /// [`Disconnected`]: crate::sync::mpsc::error::TryRecvError::Disconnected
259    /// [`poll_recv`]: Self::poll_recv
260    /// [senders]: crate::sync::mpsc::Sender
261    /// [permits]: crate::sync::mpsc::Permit
262    ///
263    /// # Examples
264    ///
265    /// ```
266    /// use tokio::sync::mpsc;
267    /// use tokio::sync::mpsc::error::TryRecvError;
268    ///
269    /// #[tokio::main]
270    /// async fn main() {
271    ///     let (tx, mut rx) = mpsc::unbounded_channel();
272    ///
273    ///     tx.send("hello").unwrap();
274    ///
275    ///     assert_eq!(Ok("hello"), rx.try_recv());
276    ///     assert_eq!(Err(TryRecvError::Empty), rx.try_recv());
277    ///
278    ///     tx.send("hello").unwrap();
279    ///     // Drop the last sender, closing the channel.
280    ///     drop(tx);
281    ///
282    ///     assert_eq!(Ok("hello"), rx.try_recv());
283    ///     assert_eq!(Err(TryRecvError::Disconnected), rx.try_recv());
284    /// }
285    /// ```
286    pub fn try_recv(&mut self) -> Result<T, TryRecvError> {
287        self.chan.try_recv()
288    }
289
290    /// Blocking receive to call outside of asynchronous contexts.
291    ///
292    /// # Panics
293    ///
294    /// This function panics if called within an asynchronous execution
295    /// context.
296    ///
297    /// # Examples
298    ///
299    /// ```
300    /// use std::thread;
301    /// use tokio::sync::mpsc;
302    ///
303    /// #[tokio::main]
304    /// async fn main() {
305    ///     let (tx, mut rx) = mpsc::unbounded_channel::<u8>();
306    ///
307    ///     let sync_code = thread::spawn(move || {
308    ///         assert_eq!(Some(10), rx.blocking_recv());
309    ///     });
310    ///
311    ///     let _ = tx.send(10);
312    ///     sync_code.join().unwrap();
313    /// }
314    /// ```
315    #[track_caller]
316    #[cfg(feature = "sync")]
317    #[cfg_attr(docsrs, doc(alias = "recv_blocking"))]
318    pub fn blocking_recv(&mut self) -> Option<T> {
319        crate::future::block_on(self.recv())
320    }
321
322    /// Variant of [`Self::recv_many`] for blocking contexts.
323    ///
324    /// The same conditions as in [`Self::blocking_recv`] apply.
325    #[track_caller]
326    #[cfg(feature = "sync")]
327    #[cfg_attr(docsrs, doc(alias = "recv_many_blocking"))]
328    pub fn blocking_recv_many(&mut self, buffer: &mut Vec<T>, limit: usize) -> usize {
329        crate::future::block_on(self.recv_many(buffer, limit))
330    }
331
332    /// Closes the receiving half of a channel, without dropping it.
333    ///
334    /// This prevents any further messages from being sent on the channel while
335    /// still enabling the receiver to drain messages that are buffered.
336    ///
337    /// To guarantee that no messages are dropped, after calling `close()`,
338    /// `recv()` must be called until `None` is returned.
339    pub fn close(&mut self) {
340        self.chan.close();
341    }
342
343    /// Checks if a channel is closed.
344    ///
345    /// This method returns `true` if the channel has been closed. The channel is closed
346    /// when all [`UnboundedSender`] have been dropped, or when [`UnboundedReceiver::close`] is called.
347    ///
348    /// [`UnboundedSender`]: crate::sync::mpsc::UnboundedSender
349    /// [`UnboundedReceiver::close`]: crate::sync::mpsc::UnboundedReceiver::close
350    ///
351    /// # Examples
352    /// ```
353    /// use tokio::sync::mpsc;
354    ///
355    /// #[tokio::main]
356    /// async fn main() {
357    ///     let (_tx, mut rx) = mpsc::unbounded_channel::<()>();
358    ///     assert!(!rx.is_closed());
359    ///
360    ///     rx.close();
361    ///
362    ///     assert!(rx.is_closed());
363    /// }
364    /// ```
365    pub fn is_closed(&self) -> bool {
366        self.chan.is_closed()
367    }
368
369    /// Checks if a channel is empty.
370    ///
371    /// This method returns `true` if the channel has no messages.
372    ///
373    /// # Examples
374    /// ```
375    /// use tokio::sync::mpsc;
376    ///
377    /// #[tokio::main]
378    /// async fn main() {
379    ///     let (tx, rx) = mpsc::unbounded_channel();
380    ///     assert!(rx.is_empty());
381    ///
382    ///     tx.send(0).unwrap();
383    ///     assert!(!rx.is_empty());
384    /// }
385    ///
386    /// ```
387    pub fn is_empty(&self) -> bool {
388        self.chan.is_empty()
389    }
390
391    /// Returns the number of messages in the channel.
392    ///
393    /// # Examples
394    /// ```
395    /// use tokio::sync::mpsc;
396    ///
397    /// #[tokio::main]
398    /// async fn main() {
399    ///     let (tx, rx) = mpsc::unbounded_channel();
400    ///     assert_eq!(0, rx.len());
401    ///
402    ///     tx.send(0).unwrap();
403    ///     assert_eq!(1, rx.len());
404    /// }
405    /// ```
406    pub fn len(&self) -> usize {
407        self.chan.len()
408    }
409
410    /// Polls to receive the next message on this channel.
411    ///
412    /// This method returns:
413    ///
414    ///  * `Poll::Pending` if no messages are available but the channel is not
415    ///    closed, or if a spurious failure happens.
416    ///  * `Poll::Ready(Some(message))` if a message is available.
417    ///  * `Poll::Ready(None)` if the channel has been closed and all messages
418    ///    sent before it was closed have been received.
419    ///
420    /// When the method returns `Poll::Pending`, the `Waker` in the provided
421    /// `Context` is scheduled to receive a wakeup when a message is sent on any
422    /// receiver, or when the channel is closed.  Note that on multiple calls to
423    /// `poll_recv` or `poll_recv_many`, only the `Waker` from the `Context`
424    /// passed to the most recent call is scheduled to receive a wakeup.
425    ///
426    /// If this method returns `Poll::Pending` due to a spurious failure, then
427    /// the `Waker` will be notified when the situation causing the spurious
428    /// failure has been resolved. Note that receiving such a wakeup does not
429    /// guarantee that the next call will succeed — it could fail with another
430    /// spurious failure.
431    pub fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Option<T>> {
432        self.chan.recv(cx)
433    }
434
435    /// Polls to receive multiple messages on this channel, extending the provided buffer.
436    ///
437    /// This method returns:
438    /// * `Poll::Pending` if no messages are available but the channel is not closed, or if a
439    ///   spurious failure happens.
440    /// * `Poll::Ready(count)` where `count` is the number of messages successfully received and
441    ///   stored in `buffer`. This can be less than, or equal to, `limit`.
442    /// * `Poll::Ready(0)` if `limit` is set to zero or when the channel is closed.
443    ///
444    /// When the method returns `Poll::Pending`, the `Waker` in the provided
445    /// `Context` is scheduled to receive a wakeup when a message is sent on any
446    /// receiver, or when the channel is closed.  Note that on multiple calls to
447    /// `poll_recv` or `poll_recv_many`, only the `Waker` from the `Context`
448    /// passed to the most recent call is scheduled to receive a wakeup.
449    ///
450    /// Note that this method does not guarantee that exactly `limit` messages
451    /// are received. Rather, if at least one message is available, it returns
452    /// as many messages as it can up to the given limit. This method returns
453    /// zero only if the channel is closed (or if `limit` is zero).
454    ///
455    /// # Examples
456    ///
457    /// ```
458    /// use std::task::{Context, Poll};
459    /// use std::pin::Pin;
460    /// use tokio::sync::mpsc;
461    /// use futures::Future;
462    ///
463    /// struct MyReceiverFuture<'a> {
464    ///     receiver: mpsc::UnboundedReceiver<i32>,
465    ///     buffer: &'a mut Vec<i32>,
466    ///     limit: usize,
467    /// }
468    ///
469    /// impl<'a> Future for MyReceiverFuture<'a> {
470    ///     type Output = usize; // Number of messages received
471    ///
472    ///     fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
473    ///         let MyReceiverFuture { receiver, buffer, limit } = &mut *self;
474    ///
475    ///         // Now `receiver` and `buffer` are mutable references, and `limit` is copied
476    ///         match receiver.poll_recv_many(cx, *buffer, *limit) {
477    ///             Poll::Pending => Poll::Pending,
478    ///             Poll::Ready(count) => Poll::Ready(count),
479    ///         }
480    ///     }
481    /// }
482    ///
483    /// #[tokio::main]
484    /// async fn main() {
485    ///     let (tx, rx) = mpsc::unbounded_channel::<i32>();
486    ///     let mut buffer = Vec::new();
487    ///
488    ///     let my_receiver_future = MyReceiverFuture {
489    ///         receiver: rx,
490    ///         buffer: &mut buffer,
491    ///         limit: 3,
492    ///     };
493    ///
494    ///     for i in 0..10 {
495    ///         tx.send(i).expect("Unable to send integer");
496    ///     }
497    ///
498    ///     let count = my_receiver_future.await;
499    ///     assert_eq!(count, 3);
500    ///     assert_eq!(buffer, vec![0,1,2])
501    /// }
502    /// ```
503    pub fn poll_recv_many(
504        &mut self,
505        cx: &mut Context<'_>,
506        buffer: &mut Vec<T>,
507        limit: usize,
508    ) -> Poll<usize> {
509        self.chan.recv_many(cx, buffer, limit)
510    }
511
512    /// Returns the number of [`UnboundedSender`] handles.
513    pub fn sender_strong_count(&self) -> usize {
514        self.chan.sender_strong_count()
515    }
516
517    /// Returns the number of [`WeakUnboundedSender`] handles.
518    pub fn sender_weak_count(&self) -> usize {
519        self.chan.sender_weak_count()
520    }
521}
522
523impl<T> UnboundedSender<T> {
524    pub(crate) fn new(chan: chan::Tx<T, Semaphore>) -> UnboundedSender<T> {
525        UnboundedSender { chan }
526    }
527
528    /// Attempts to send a message on this `UnboundedSender` without blocking.
529    ///
530    /// This method is not marked async because sending a message to an unbounded channel
531    /// never requires any form of waiting. Because of this, the `send` method can be
532    /// used in both synchronous and asynchronous code without problems.
533    ///
534    /// If the receive half of the channel is closed, either due to [`close`]
535    /// being called or the [`UnboundedReceiver`] having been dropped, this
536    /// function returns an error. The error includes the value passed to `send`.
537    ///
538    /// [`close`]: UnboundedReceiver::close
539    /// [`UnboundedReceiver`]: UnboundedReceiver
540    pub fn send(&self, message: T) -> Result<(), SendError<T>> {
541        if !self.inc_num_messages() {
542            return Err(SendError(message));
543        }
544
545        self.chan.send(message);
546        Ok(())
547    }
548
549    fn inc_num_messages(&self) -> bool {
550        use std::process;
551        use std::sync::atomic::Ordering::{AcqRel, Acquire};
552
553        let mut curr = self.chan.semaphore().0.load(Acquire);
554
555        loop {
556            if curr & 1 == 1 {
557                return false;
558            }
559
560            if curr == usize::MAX ^ 1 {
561                // Overflowed the ref count. There is no safe way to recover, so
562                // abort the process. In practice, this should never happen.
563                process::abort()
564            }
565
566            match self
567                .chan
568                .semaphore()
569                .0
570                .compare_exchange(curr, curr + 2, AcqRel, Acquire)
571            {
572                Ok(_) => return true,
573                Err(actual) => {
574                    curr = actual;
575                }
576            }
577        }
578    }
579
580    /// Completes when the receiver has dropped.
581    ///
582    /// This allows the producers to get notified when interest in the produced
583    /// values is canceled and immediately stop doing work.
584    ///
585    /// # Cancel safety
586    ///
587    /// This method is cancel safe. Once the channel is closed, it stays closed
588    /// forever and all future calls to `closed` will return immediately.
589    ///
590    /// # Examples
591    ///
592    /// ```
593    /// use tokio::sync::mpsc;
594    ///
595    /// #[tokio::main]
596    /// async fn main() {
597    ///     let (tx1, rx) = mpsc::unbounded_channel::<()>();
598    ///     let tx2 = tx1.clone();
599    ///     let tx3 = tx1.clone();
600    ///     let tx4 = tx1.clone();
601    ///     let tx5 = tx1.clone();
602    ///     tokio::spawn(async move {
603    ///         drop(rx);
604    ///     });
605    ///
606    ///     futures::join!(
607    ///         tx1.closed(),
608    ///         tx2.closed(),
609    ///         tx3.closed(),
610    ///         tx4.closed(),
611    ///         tx5.closed()
612    ///     );
613    ////     println!("Receiver dropped");
614    /// }
615    /// ```
616    pub async fn closed(&self) {
617        self.chan.closed().await;
618    }
619
620    /// Checks if the channel has been closed. This happens when the
621    /// [`UnboundedReceiver`] is dropped, or when the
622    /// [`UnboundedReceiver::close`] method is called.
623    ///
624    /// [`UnboundedReceiver`]: crate::sync::mpsc::UnboundedReceiver
625    /// [`UnboundedReceiver::close`]: crate::sync::mpsc::UnboundedReceiver::close
626    ///
627    /// ```
628    /// let (tx, rx) = tokio::sync::mpsc::unbounded_channel::<()>();
629    /// assert!(!tx.is_closed());
630    ///
631    /// let tx2 = tx.clone();
632    /// assert!(!tx2.is_closed());
633    ///
634    /// drop(rx);
635    /// assert!(tx.is_closed());
636    /// assert!(tx2.is_closed());
637    /// ```
638    pub fn is_closed(&self) -> bool {
639        self.chan.is_closed()
640    }
641
642    /// Returns `true` if senders belong to the same channel.
643    ///
644    /// # Examples
645    ///
646    /// ```
647    /// let (tx, rx) = tokio::sync::mpsc::unbounded_channel::<()>();
648    /// let  tx2 = tx.clone();
649    /// assert!(tx.same_channel(&tx2));
650    ///
651    /// let (tx3, rx3) = tokio::sync::mpsc::unbounded_channel::<()>();
652    /// assert!(!tx3.same_channel(&tx2));
653    /// ```
654    pub fn same_channel(&self, other: &Self) -> bool {
655        self.chan.same_channel(&other.chan)
656    }
657
658    /// Converts the `UnboundedSender` to a [`WeakUnboundedSender`] that does not count
659    /// towards RAII semantics, i.e. if all `UnboundedSender` instances of the
660    /// channel were dropped and only `WeakUnboundedSender` instances remain,
661    /// the channel is closed.
662    #[must_use = "Downgrade creates a WeakSender without destroying the original non-weak sender."]
663    pub fn downgrade(&self) -> WeakUnboundedSender<T> {
664        WeakUnboundedSender {
665            chan: self.chan.downgrade(),
666        }
667    }
668
669    /// Returns the number of [`UnboundedSender`] handles.
670    pub fn strong_count(&self) -> usize {
671        self.chan.strong_count()
672    }
673
674    /// Returns the number of [`WeakUnboundedSender`] handles.
675    pub fn weak_count(&self) -> usize {
676        self.chan.weak_count()
677    }
678}
679
680impl<T> Clone for WeakUnboundedSender<T> {
681    fn clone(&self) -> Self {
682        self.chan.increment_weak_count();
683
684        WeakUnboundedSender {
685            chan: self.chan.clone(),
686        }
687    }
688}
689
690impl<T> Drop for WeakUnboundedSender<T> {
691    fn drop(&mut self) {
692        self.chan.decrement_weak_count();
693    }
694}
695
696impl<T> WeakUnboundedSender<T> {
697    /// Tries to convert a `WeakUnboundedSender` into an [`UnboundedSender`].
698    /// This will return `Some` if there are other `Sender` instances alive and
699    /// the channel wasn't previously dropped, otherwise `None` is returned.
700    pub fn upgrade(&self) -> Option<UnboundedSender<T>> {
701        chan::Tx::upgrade(self.chan.clone()).map(UnboundedSender::new)
702    }
703
704    /// Returns the number of [`UnboundedSender`] handles.
705    pub fn strong_count(&self) -> usize {
706        self.chan.strong_count()
707    }
708
709    /// Returns the number of [`WeakUnboundedSender`] handles.
710    pub fn weak_count(&self) -> usize {
711        self.chan.weak_count()
712    }
713}
714
715impl<T> fmt::Debug for WeakUnboundedSender<T> {
716    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
717        fmt.debug_struct("WeakUnboundedSender").finish()
718    }
719}