tokio/sync/mpsc/unbounded.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
use crate::loom::sync::{atomic::AtomicUsize, Arc};
use crate::sync::mpsc::chan;
use crate::sync::mpsc::error::{SendError, TryRecvError};
use std::fmt;
use std::task::{Context, Poll};
/// Send values to the associated `UnboundedReceiver`.
///
/// Instances are created by the [`unbounded_channel`] function.
pub struct UnboundedSender<T> {
chan: chan::Tx<T, Semaphore>,
}
/// An unbounded sender that does not prevent the channel from being closed.
///
/// If all [`UnboundedSender`] instances of a channel were dropped and only
/// `WeakUnboundedSender` instances remain, the channel is closed.
///
/// In order to send messages, the `WeakUnboundedSender` needs to be upgraded using
/// [`WeakUnboundedSender::upgrade`], which returns `Option<UnboundedSender>`. It returns `None`
/// if all `UnboundedSender`s have been dropped, and otherwise it returns an `UnboundedSender`.
///
/// [`UnboundedSender`]: UnboundedSender
/// [`WeakUnboundedSender::upgrade`]: WeakUnboundedSender::upgrade
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc::unbounded_channel;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, _rx) = unbounded_channel::<i32>();
/// let tx_weak = tx.downgrade();
///
/// // Upgrading will succeed because `tx` still exists.
/// assert!(tx_weak.upgrade().is_some());
///
/// // If we drop `tx`, then it will fail.
/// drop(tx);
/// assert!(tx_weak.clone().upgrade().is_none());
/// }
/// ```
pub struct WeakUnboundedSender<T> {
chan: Arc<chan::Chan<T, Semaphore>>,
}
impl<T> Clone for UnboundedSender<T> {
fn clone(&self) -> Self {
UnboundedSender {
chan: self.chan.clone(),
}
}
}
impl<T> fmt::Debug for UnboundedSender<T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("UnboundedSender")
.field("chan", &self.chan)
.finish()
}
}
/// Receive values from the associated `UnboundedSender`.
///
/// Instances are created by the [`unbounded_channel`] function.
///
/// This receiver can be turned into a `Stream` using [`UnboundedReceiverStream`].
///
/// [`UnboundedReceiverStream`]: https://docs.rs/tokio-stream/0.1/tokio_stream/wrappers/struct.UnboundedReceiverStream.html
pub struct UnboundedReceiver<T> {
/// The channel receiver
chan: chan::Rx<T, Semaphore>,
}
impl<T> fmt::Debug for UnboundedReceiver<T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("UnboundedReceiver")
.field("chan", &self.chan)
.finish()
}
}
/// Creates an unbounded mpsc channel for communicating between asynchronous
/// tasks without backpressure.
///
/// A `send` on this channel will always succeed as long as the receive half has
/// not been closed. If the receiver falls behind, messages will be arbitrarily
/// buffered.
///
/// **Note** that the amount of available system memory is an implicit bound to
/// the channel. Using an `unbounded` channel has the ability of causing the
/// process to run out of memory. In this case, the process will be aborted.
pub fn unbounded_channel<T>() -> (UnboundedSender<T>, UnboundedReceiver<T>) {
let (tx, rx) = chan::channel(Semaphore(AtomicUsize::new(0)));
let tx = UnboundedSender::new(tx);
let rx = UnboundedReceiver::new(rx);
(tx, rx)
}
/// No capacity
#[derive(Debug)]
pub(crate) struct Semaphore(pub(crate) AtomicUsize);
impl<T> UnboundedReceiver<T> {
pub(crate) fn new(chan: chan::Rx<T, Semaphore>) -> UnboundedReceiver<T> {
UnboundedReceiver { chan }
}
/// Receives the next value for this receiver.
///
/// This method returns `None` if the channel has been closed and there are
/// no remaining messages in the channel's buffer. This indicates that no
/// further values can ever be received from this `Receiver`. The channel is
/// closed when all senders have been dropped, or when [`close`] is called.
///
/// If there are no messages in the channel's buffer, but the channel has
/// not yet been closed, this method will sleep until a message is sent or
/// the channel is closed.
///
/// # Cancel safety
///
/// This method is cancel safe. If `recv` is used as the event in a
/// [`tokio::select!`](crate::select) statement and some other branch
/// completes first, it is guaranteed that no messages were received on this
/// channel.
///
/// [`close`]: Self::close
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::unbounded_channel();
///
/// tokio::spawn(async move {
/// tx.send("hello").unwrap();
/// });
///
/// assert_eq!(Some("hello"), rx.recv().await);
/// assert_eq!(None, rx.recv().await);
/// }
/// ```
///
/// Values are buffered:
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::unbounded_channel();
///
/// tx.send("hello").unwrap();
/// tx.send("world").unwrap();
///
/// assert_eq!(Some("hello"), rx.recv().await);
/// assert_eq!(Some("world"), rx.recv().await);
/// }
/// ```
pub async fn recv(&mut self) -> Option<T> {
use std::future::poll_fn;
poll_fn(|cx| self.poll_recv(cx)).await
}
/// Receives the next values for this receiver and extends `buffer`.
///
/// This method extends `buffer` by no more than a fixed number of values
/// as specified by `limit`. If `limit` is zero, the function returns
/// immediately with `0`. The return value is the number of values added to
/// `buffer`.
///
/// For `limit > 0`, if there are no messages in the channel's queue,
/// but the channel has not yet been closed, this method will sleep
/// until a message is sent or the channel is closed.
///
/// For non-zero values of `limit`, this method will never return `0` unless
/// the channel has been closed and there are no remaining messages in the
/// channel's queue. This indicates that no further values can ever be
/// received from this `Receiver`. The channel is closed when all senders
/// have been dropped, or when [`close`] is called.
///
/// The capacity of `buffer` is increased as needed.
///
/// # Cancel safety
///
/// This method is cancel safe. If `recv_many` is used as the event in a
/// [`tokio::select!`](crate::select) statement and some other branch
/// completes first, it is guaranteed that no messages were received on this
/// channel.
///
/// [`close`]: Self::close
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let mut buffer: Vec<&str> = Vec::with_capacity(2);
/// let limit = 2;
/// let (tx, mut rx) = mpsc::unbounded_channel();
/// let tx2 = tx.clone();
/// tx2.send("first").unwrap();
/// tx2.send("second").unwrap();
/// tx2.send("third").unwrap();
///
/// // Call `recv_many` to receive up to `limit` (2) values.
/// assert_eq!(2, rx.recv_many(&mut buffer, limit).await);
/// assert_eq!(vec!["first", "second"], buffer);
///
/// // If the buffer is full, the next call to `recv_many`
/// // reserves additional capacity.
/// assert_eq!(1, rx.recv_many(&mut buffer, limit).await);
///
/// tokio::spawn(async move {
/// tx.send("fourth").unwrap();
/// });
///
/// // 'tx' is dropped, but `recv_many`
/// // is guaranteed not to return 0 as the channel
/// // is not yet closed.
/// assert_eq!(1, rx.recv_many(&mut buffer, limit).await);
/// assert_eq!(vec!["first", "second", "third", "fourth"], buffer);
///
/// // Once the last sender is dropped, the channel is
/// // closed and `recv_many` returns 0, capacity unchanged.
/// drop(tx2);
/// assert_eq!(0, rx.recv_many(&mut buffer, limit).await);
/// assert_eq!(vec!["first", "second", "third", "fourth"], buffer);
/// }
/// ```
pub async fn recv_many(&mut self, buffer: &mut Vec<T>, limit: usize) -> usize {
use std::future::poll_fn;
poll_fn(|cx| self.chan.recv_many(cx, buffer, limit)).await
}
/// Tries to receive the next value for this receiver.
///
/// This method returns the [`Empty`] error if the channel is currently
/// empty, but there are still outstanding [senders] or [permits].
///
/// This method returns the [`Disconnected`] error if the channel is
/// currently empty, and there are no outstanding [senders] or [permits].
///
/// Unlike the [`poll_recv`] method, this method will never return an
/// [`Empty`] error spuriously.
///
/// [`Empty`]: crate::sync::mpsc::error::TryRecvError::Empty
/// [`Disconnected`]: crate::sync::mpsc::error::TryRecvError::Disconnected
/// [`poll_recv`]: Self::poll_recv
/// [senders]: crate::sync::mpsc::Sender
/// [permits]: crate::sync::mpsc::Permit
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
/// use tokio::sync::mpsc::error::TryRecvError;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::unbounded_channel();
///
/// tx.send("hello").unwrap();
///
/// assert_eq!(Ok("hello"), rx.try_recv());
/// assert_eq!(Err(TryRecvError::Empty), rx.try_recv());
///
/// tx.send("hello").unwrap();
/// // Drop the last sender, closing the channel.
/// drop(tx);
///
/// assert_eq!(Ok("hello"), rx.try_recv());
/// assert_eq!(Err(TryRecvError::Disconnected), rx.try_recv());
/// }
/// ```
pub fn try_recv(&mut self) -> Result<T, TryRecvError> {
self.chan.try_recv()
}
/// Blocking receive to call outside of asynchronous contexts.
///
/// # Panics
///
/// This function panics if called within an asynchronous execution
/// context.
///
/// # Examples
///
/// ```
/// use std::thread;
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, mut rx) = mpsc::unbounded_channel::<u8>();
///
/// let sync_code = thread::spawn(move || {
/// assert_eq!(Some(10), rx.blocking_recv());
/// });
///
/// let _ = tx.send(10);
/// sync_code.join().unwrap();
/// }
/// ```
#[track_caller]
#[cfg(feature = "sync")]
#[cfg_attr(docsrs, doc(alias = "recv_blocking"))]
pub fn blocking_recv(&mut self) -> Option<T> {
crate::future::block_on(self.recv())
}
/// Variant of [`Self::recv_many`] for blocking contexts.
///
/// The same conditions as in [`Self::blocking_recv`] apply.
#[track_caller]
#[cfg(feature = "sync")]
#[cfg_attr(docsrs, doc(alias = "recv_many_blocking"))]
pub fn blocking_recv_many(&mut self, buffer: &mut Vec<T>, limit: usize) -> usize {
crate::future::block_on(self.recv_many(buffer, limit))
}
/// Closes the receiving half of a channel, without dropping it.
///
/// This prevents any further messages from being sent on the channel while
/// still enabling the receiver to drain messages that are buffered.
///
/// To guarantee that no messages are dropped, after calling `close()`,
/// `recv()` must be called until `None` is returned.
pub fn close(&mut self) {
self.chan.close();
}
/// Checks if a channel is closed.
///
/// This method returns `true` if the channel has been closed. The channel is closed
/// when all [`UnboundedSender`] have been dropped, or when [`UnboundedReceiver::close`] is called.
///
/// [`UnboundedSender`]: crate::sync::mpsc::UnboundedSender
/// [`UnboundedReceiver::close`]: crate::sync::mpsc::UnboundedReceiver::close
///
/// # Examples
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (_tx, mut rx) = mpsc::unbounded_channel::<()>();
/// assert!(!rx.is_closed());
///
/// rx.close();
///
/// assert!(rx.is_closed());
/// }
/// ```
pub fn is_closed(&self) -> bool {
self.chan.is_closed()
}
/// Checks if a channel is empty.
///
/// This method returns `true` if the channel has no messages.
///
/// # Examples
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, rx) = mpsc::unbounded_channel();
/// assert!(rx.is_empty());
///
/// tx.send(0).unwrap();
/// assert!(!rx.is_empty());
/// }
///
/// ```
pub fn is_empty(&self) -> bool {
self.chan.is_empty()
}
/// Returns the number of messages in the channel.
///
/// # Examples
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, rx) = mpsc::unbounded_channel();
/// assert_eq!(0, rx.len());
///
/// tx.send(0).unwrap();
/// assert_eq!(1, rx.len());
/// }
/// ```
pub fn len(&self) -> usize {
self.chan.len()
}
/// Polls to receive the next message on this channel.
///
/// This method returns:
///
/// * `Poll::Pending` if no messages are available but the channel is not
/// closed, or if a spurious failure happens.
/// * `Poll::Ready(Some(message))` if a message is available.
/// * `Poll::Ready(None)` if the channel has been closed and all messages
/// sent before it was closed have been received.
///
/// When the method returns `Poll::Pending`, the `Waker` in the provided
/// `Context` is scheduled to receive a wakeup when a message is sent on any
/// receiver, or when the channel is closed. Note that on multiple calls to
/// `poll_recv` or `poll_recv_many`, only the `Waker` from the `Context`
/// passed to the most recent call is scheduled to receive a wakeup.
///
/// If this method returns `Poll::Pending` due to a spurious failure, then
/// the `Waker` will be notified when the situation causing the spurious
/// failure has been resolved. Note that receiving such a wakeup does not
/// guarantee that the next call will succeed — it could fail with another
/// spurious failure.
pub fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Option<T>> {
self.chan.recv(cx)
}
/// Polls to receive multiple messages on this channel, extending the provided buffer.
///
/// This method returns:
/// * `Poll::Pending` if no messages are available but the channel is not closed, or if a
/// spurious failure happens.
/// * `Poll::Ready(count)` where `count` is the number of messages successfully received and
/// stored in `buffer`. This can be less than, or equal to, `limit`.
/// * `Poll::Ready(0)` if `limit` is set to zero or when the channel is closed.
///
/// When the method returns `Poll::Pending`, the `Waker` in the provided
/// `Context` is scheduled to receive a wakeup when a message is sent on any
/// receiver, or when the channel is closed. Note that on multiple calls to
/// `poll_recv` or `poll_recv_many`, only the `Waker` from the `Context`
/// passed to the most recent call is scheduled to receive a wakeup.
///
/// Note that this method does not guarantee that exactly `limit` messages
/// are received. Rather, if at least one message is available, it returns
/// as many messages as it can up to the given limit. This method returns
/// zero only if the channel is closed (or if `limit` is zero).
///
/// # Examples
///
/// ```
/// use std::task::{Context, Poll};
/// use std::pin::Pin;
/// use tokio::sync::mpsc;
/// use futures::Future;
///
/// struct MyReceiverFuture<'a> {
/// receiver: mpsc::UnboundedReceiver<i32>,
/// buffer: &'a mut Vec<i32>,
/// limit: usize,
/// }
///
/// impl<'a> Future for MyReceiverFuture<'a> {
/// type Output = usize; // Number of messages received
///
/// fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
/// let MyReceiverFuture { receiver, buffer, limit } = &mut *self;
///
/// // Now `receiver` and `buffer` are mutable references, and `limit` is copied
/// match receiver.poll_recv_many(cx, *buffer, *limit) {
/// Poll::Pending => Poll::Pending,
/// Poll::Ready(count) => Poll::Ready(count),
/// }
/// }
/// }
///
/// #[tokio::main]
/// async fn main() {
/// let (tx, rx) = mpsc::unbounded_channel::<i32>();
/// let mut buffer = Vec::new();
///
/// let my_receiver_future = MyReceiverFuture {
/// receiver: rx,
/// buffer: &mut buffer,
/// limit: 3,
/// };
///
/// for i in 0..10 {
/// tx.send(i).expect("Unable to send integer");
/// }
///
/// let count = my_receiver_future.await;
/// assert_eq!(count, 3);
/// assert_eq!(buffer, vec![0,1,2])
/// }
/// ```
pub fn poll_recv_many(
&mut self,
cx: &mut Context<'_>,
buffer: &mut Vec<T>,
limit: usize,
) -> Poll<usize> {
self.chan.recv_many(cx, buffer, limit)
}
/// Returns the number of [`UnboundedSender`] handles.
pub fn sender_strong_count(&self) -> usize {
self.chan.sender_strong_count()
}
/// Returns the number of [`WeakUnboundedSender`] handles.
pub fn sender_weak_count(&self) -> usize {
self.chan.sender_weak_count()
}
}
impl<T> UnboundedSender<T> {
pub(crate) fn new(chan: chan::Tx<T, Semaphore>) -> UnboundedSender<T> {
UnboundedSender { chan }
}
/// Attempts to send a message on this `UnboundedSender` without blocking.
///
/// This method is not marked async because sending a message to an unbounded channel
/// never requires any form of waiting. Because of this, the `send` method can be
/// used in both synchronous and asynchronous code without problems.
///
/// If the receive half of the channel is closed, either due to [`close`]
/// being called or the [`UnboundedReceiver`] having been dropped, this
/// function returns an error. The error includes the value passed to `send`.
///
/// [`close`]: UnboundedReceiver::close
/// [`UnboundedReceiver`]: UnboundedReceiver
pub fn send(&self, message: T) -> Result<(), SendError<T>> {
if !self.inc_num_messages() {
return Err(SendError(message));
}
self.chan.send(message);
Ok(())
}
fn inc_num_messages(&self) -> bool {
use std::process;
use std::sync::atomic::Ordering::{AcqRel, Acquire};
let mut curr = self.chan.semaphore().0.load(Acquire);
loop {
if curr & 1 == 1 {
return false;
}
if curr == usize::MAX ^ 1 {
// Overflowed the ref count. There is no safe way to recover, so
// abort the process. In practice, this should never happen.
process::abort()
}
match self
.chan
.semaphore()
.0
.compare_exchange(curr, curr + 2, AcqRel, Acquire)
{
Ok(_) => return true,
Err(actual) => {
curr = actual;
}
}
}
}
/// Completes when the receiver has dropped.
///
/// This allows the producers to get notified when interest in the produced
/// values is canceled and immediately stop doing work.
///
/// # Cancel safety
///
/// This method is cancel safe. Once the channel is closed, it stays closed
/// forever and all future calls to `closed` will return immediately.
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc;
///
/// #[tokio::main]
/// async fn main() {
/// let (tx1, rx) = mpsc::unbounded_channel::<()>();
/// let tx2 = tx1.clone();
/// let tx3 = tx1.clone();
/// let tx4 = tx1.clone();
/// let tx5 = tx1.clone();
/// tokio::spawn(async move {
/// drop(rx);
/// });
///
/// futures::join!(
/// tx1.closed(),
/// tx2.closed(),
/// tx3.closed(),
/// tx4.closed(),
/// tx5.closed()
/// );
//// println!("Receiver dropped");
/// }
/// ```
pub async fn closed(&self) {
self.chan.closed().await;
}
/// Checks if the channel has been closed. This happens when the
/// [`UnboundedReceiver`] is dropped, or when the
/// [`UnboundedReceiver::close`] method is called.
///
/// [`UnboundedReceiver`]: crate::sync::mpsc::UnboundedReceiver
/// [`UnboundedReceiver::close`]: crate::sync::mpsc::UnboundedReceiver::close
///
/// ```
/// let (tx, rx) = tokio::sync::mpsc::unbounded_channel::<()>();
/// assert!(!tx.is_closed());
///
/// let tx2 = tx.clone();
/// assert!(!tx2.is_closed());
///
/// drop(rx);
/// assert!(tx.is_closed());
/// assert!(tx2.is_closed());
/// ```
pub fn is_closed(&self) -> bool {
self.chan.is_closed()
}
/// Returns `true` if senders belong to the same channel.
///
/// # Examples
///
/// ```
/// let (tx, rx) = tokio::sync::mpsc::unbounded_channel::<()>();
/// let tx2 = tx.clone();
/// assert!(tx.same_channel(&tx2));
///
/// let (tx3, rx3) = tokio::sync::mpsc::unbounded_channel::<()>();
/// assert!(!tx3.same_channel(&tx2));
/// ```
pub fn same_channel(&self, other: &Self) -> bool {
self.chan.same_channel(&other.chan)
}
/// Converts the `UnboundedSender` to a [`WeakUnboundedSender`] that does not count
/// towards RAII semantics, i.e. if all `UnboundedSender` instances of the
/// channel were dropped and only `WeakUnboundedSender` instances remain,
/// the channel is closed.
#[must_use = "Downgrade creates a WeakSender without destroying the original non-weak sender."]
pub fn downgrade(&self) -> WeakUnboundedSender<T> {
WeakUnboundedSender {
chan: self.chan.downgrade(),
}
}
/// Returns the number of [`UnboundedSender`] handles.
pub fn strong_count(&self) -> usize {
self.chan.strong_count()
}
/// Returns the number of [`WeakUnboundedSender`] handles.
pub fn weak_count(&self) -> usize {
self.chan.weak_count()
}
}
impl<T> Clone for WeakUnboundedSender<T> {
fn clone(&self) -> Self {
self.chan.increment_weak_count();
WeakUnboundedSender {
chan: self.chan.clone(),
}
}
}
impl<T> Drop for WeakUnboundedSender<T> {
fn drop(&mut self) {
self.chan.decrement_weak_count();
}
}
impl<T> WeakUnboundedSender<T> {
/// Tries to convert a `WeakUnboundedSender` into an [`UnboundedSender`].
/// This will return `Some` if there are other `Sender` instances alive and
/// the channel wasn't previously dropped, otherwise `None` is returned.
pub fn upgrade(&self) -> Option<UnboundedSender<T>> {
chan::Tx::upgrade(self.chan.clone()).map(UnboundedSender::new)
}
/// Returns the number of [`UnboundedSender`] handles.
pub fn strong_count(&self) -> usize {
self.chan.strong_count()
}
/// Returns the number of [`WeakUnboundedSender`] handles.
pub fn weak_count(&self) -> usize {
self.chan.weak_count()
}
}
impl<T> fmt::Debug for WeakUnboundedSender<T> {
fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
fmt.debug_struct("WeakUnboundedSender").finish()
}
}