tokio/sync/mpsc/
unbounded.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
use crate::loom::sync::{atomic::AtomicUsize, Arc};
use crate::sync::mpsc::chan;
use crate::sync::mpsc::error::{SendError, TryRecvError};

use std::fmt;
use std::task::{Context, Poll};

/// Send values to the associated `UnboundedReceiver`.
///
/// Instances are created by the [`unbounded_channel`] function.
pub struct UnboundedSender<T> {
    chan: chan::Tx<T, Semaphore>,
}

/// An unbounded sender that does not prevent the channel from being closed.
///
/// If all [`UnboundedSender`] instances of a channel were dropped and only
/// `WeakUnboundedSender` instances remain, the channel is closed.
///
/// In order to send messages, the `WeakUnboundedSender` needs to be upgraded using
/// [`WeakUnboundedSender::upgrade`], which returns `Option<UnboundedSender>`. It returns `None`
/// if all `UnboundedSender`s have been dropped, and otherwise it returns an `UnboundedSender`.
///
/// [`UnboundedSender`]: UnboundedSender
/// [`WeakUnboundedSender::upgrade`]: WeakUnboundedSender::upgrade
///
/// # Examples
///
/// ```
/// use tokio::sync::mpsc::unbounded_channel;
///
/// #[tokio::main]
/// async fn main() {
///     let (tx, _rx) = unbounded_channel::<i32>();
///     let tx_weak = tx.downgrade();
///
///     // Upgrading will succeed because `tx` still exists.
///     assert!(tx_weak.upgrade().is_some());
///
///     // If we drop `tx`, then it will fail.
///     drop(tx);
///     assert!(tx_weak.clone().upgrade().is_none());
/// }
/// ```
pub struct WeakUnboundedSender<T> {
    chan: Arc<chan::Chan<T, Semaphore>>,
}

impl<T> Clone for UnboundedSender<T> {
    fn clone(&self) -> Self {
        UnboundedSender {
            chan: self.chan.clone(),
        }
    }
}

impl<T> fmt::Debug for UnboundedSender<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("UnboundedSender")
            .field("chan", &self.chan)
            .finish()
    }
}

/// Receive values from the associated `UnboundedSender`.
///
/// Instances are created by the [`unbounded_channel`] function.
///
/// This receiver can be turned into a `Stream` using [`UnboundedReceiverStream`].
///
/// [`UnboundedReceiverStream`]: https://docs.rs/tokio-stream/0.1/tokio_stream/wrappers/struct.UnboundedReceiverStream.html
pub struct UnboundedReceiver<T> {
    /// The channel receiver
    chan: chan::Rx<T, Semaphore>,
}

impl<T> fmt::Debug for UnboundedReceiver<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("UnboundedReceiver")
            .field("chan", &self.chan)
            .finish()
    }
}

/// Creates an unbounded mpsc channel for communicating between asynchronous
/// tasks without backpressure.
///
/// A `send` on this channel will always succeed as long as the receive half has
/// not been closed. If the receiver falls behind, messages will be arbitrarily
/// buffered.
///
/// **Note** that the amount of available system memory is an implicit bound to
/// the channel. Using an `unbounded` channel has the ability of causing the
/// process to run out of memory. In this case, the process will be aborted.
pub fn unbounded_channel<T>() -> (UnboundedSender<T>, UnboundedReceiver<T>) {
    let (tx, rx) = chan::channel(Semaphore(AtomicUsize::new(0)));

    let tx = UnboundedSender::new(tx);
    let rx = UnboundedReceiver::new(rx);

    (tx, rx)
}

/// No capacity
#[derive(Debug)]
pub(crate) struct Semaphore(pub(crate) AtomicUsize);

impl<T> UnboundedReceiver<T> {
    pub(crate) fn new(chan: chan::Rx<T, Semaphore>) -> UnboundedReceiver<T> {
        UnboundedReceiver { chan }
    }

    /// Receives the next value for this receiver.
    ///
    /// This method returns `None` if the channel has been closed and there are
    /// no remaining messages in the channel's buffer. This indicates that no
    /// further values can ever be received from this `Receiver`. The channel is
    /// closed when all senders have been dropped, or when [`close`] is called.
    ///
    /// If there are no messages in the channel's buffer, but the channel has
    /// not yet been closed, this method will sleep until a message is sent or
    /// the channel is closed.
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. If `recv` is used as the event in a
    /// [`tokio::select!`](crate::select) statement and some other branch
    /// completes first, it is guaranteed that no messages were received on this
    /// channel.
    ///
    /// [`close`]: Self::close
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::mpsc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx) = mpsc::unbounded_channel();
    ///
    ///     tokio::spawn(async move {
    ///         tx.send("hello").unwrap();
    ///     });
    ///
    ///     assert_eq!(Some("hello"), rx.recv().await);
    ///     assert_eq!(None, rx.recv().await);
    /// }
    /// ```
    ///
    /// Values are buffered:
    ///
    /// ```
    /// use tokio::sync::mpsc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx) = mpsc::unbounded_channel();
    ///
    ///     tx.send("hello").unwrap();
    ///     tx.send("world").unwrap();
    ///
    ///     assert_eq!(Some("hello"), rx.recv().await);
    ///     assert_eq!(Some("world"), rx.recv().await);
    /// }
    /// ```
    pub async fn recv(&mut self) -> Option<T> {
        use std::future::poll_fn;

        poll_fn(|cx| self.poll_recv(cx)).await
    }

    /// Receives the next values for this receiver and extends `buffer`.
    ///
    /// This method extends `buffer` by no more than a fixed number of values
    /// as specified by `limit`. If `limit` is zero, the function returns
    /// immediately with `0`. The return value is the number of values added to
    /// `buffer`.
    ///
    /// For `limit > 0`, if there are no messages in the channel's queue,
    /// but the channel has not yet been closed, this method will sleep
    /// until a message is sent or the channel is closed.
    ///
    /// For non-zero values of `limit`, this method will never return `0` unless
    /// the channel has been closed and there are no remaining messages in the
    /// channel's queue. This indicates that no further values can ever be
    /// received from this `Receiver`. The channel is closed when all senders
    /// have been dropped, or when [`close`] is called.
    ///
    /// The capacity of `buffer` is increased as needed.
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. If `recv_many` is used as the event in a
    /// [`tokio::select!`](crate::select) statement and some other branch
    /// completes first, it is guaranteed that no messages were received on this
    /// channel.
    ///
    /// [`close`]: Self::close
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::mpsc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let mut buffer: Vec<&str> = Vec::with_capacity(2);
    ///     let limit = 2;
    ///     let (tx, mut rx) = mpsc::unbounded_channel();
    ///     let tx2 = tx.clone();
    ///     tx2.send("first").unwrap();
    ///     tx2.send("second").unwrap();
    ///     tx2.send("third").unwrap();
    ///
    ///     // Call `recv_many` to receive up to `limit` (2) values.
    ///     assert_eq!(2, rx.recv_many(&mut buffer, limit).await);
    ///     assert_eq!(vec!["first", "second"], buffer);
    ///
    ///     // If the buffer is full, the next call to `recv_many`
    ///     // reserves additional capacity.
    ///     assert_eq!(1, rx.recv_many(&mut buffer, limit).await);
    ///
    ///     tokio::spawn(async move {
    ///         tx.send("fourth").unwrap();
    ///     });
    ///
    ///     // 'tx' is dropped, but `recv_many`
    ///     // is guaranteed not to return 0 as the channel
    ///     // is not yet closed.
    ///     assert_eq!(1, rx.recv_many(&mut buffer, limit).await);
    ///     assert_eq!(vec!["first", "second", "third", "fourth"], buffer);
    ///
    ///     // Once the last sender is dropped, the channel is
    ///     // closed and `recv_many` returns 0, capacity unchanged.
    ///     drop(tx2);
    ///     assert_eq!(0, rx.recv_many(&mut buffer, limit).await);
    ///     assert_eq!(vec!["first", "second", "third", "fourth"], buffer);
    /// }
    /// ```
    pub async fn recv_many(&mut self, buffer: &mut Vec<T>, limit: usize) -> usize {
        use std::future::poll_fn;
        poll_fn(|cx| self.chan.recv_many(cx, buffer, limit)).await
    }

    /// Tries to receive the next value for this receiver.
    ///
    /// This method returns the [`Empty`] error if the channel is currently
    /// empty, but there are still outstanding [senders] or [permits].
    ///
    /// This method returns the [`Disconnected`] error if the channel is
    /// currently empty, and there are no outstanding [senders] or [permits].
    ///
    /// Unlike the [`poll_recv`] method, this method will never return an
    /// [`Empty`] error spuriously.
    ///
    /// [`Empty`]: crate::sync::mpsc::error::TryRecvError::Empty
    /// [`Disconnected`]: crate::sync::mpsc::error::TryRecvError::Disconnected
    /// [`poll_recv`]: Self::poll_recv
    /// [senders]: crate::sync::mpsc::Sender
    /// [permits]: crate::sync::mpsc::Permit
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::mpsc;
    /// use tokio::sync::mpsc::error::TryRecvError;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx) = mpsc::unbounded_channel();
    ///
    ///     tx.send("hello").unwrap();
    ///
    ///     assert_eq!(Ok("hello"), rx.try_recv());
    ///     assert_eq!(Err(TryRecvError::Empty), rx.try_recv());
    ///
    ///     tx.send("hello").unwrap();
    ///     // Drop the last sender, closing the channel.
    ///     drop(tx);
    ///
    ///     assert_eq!(Ok("hello"), rx.try_recv());
    ///     assert_eq!(Err(TryRecvError::Disconnected), rx.try_recv());
    /// }
    /// ```
    pub fn try_recv(&mut self) -> Result<T, TryRecvError> {
        self.chan.try_recv()
    }

    /// Blocking receive to call outside of asynchronous contexts.
    ///
    /// # Panics
    ///
    /// This function panics if called within an asynchronous execution
    /// context.
    ///
    /// # Examples
    ///
    /// ```
    /// use std::thread;
    /// use tokio::sync::mpsc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, mut rx) = mpsc::unbounded_channel::<u8>();
    ///
    ///     let sync_code = thread::spawn(move || {
    ///         assert_eq!(Some(10), rx.blocking_recv());
    ///     });
    ///
    ///     let _ = tx.send(10);
    ///     sync_code.join().unwrap();
    /// }
    /// ```
    #[track_caller]
    #[cfg(feature = "sync")]
    #[cfg_attr(docsrs, doc(alias = "recv_blocking"))]
    pub fn blocking_recv(&mut self) -> Option<T> {
        crate::future::block_on(self.recv())
    }

    /// Variant of [`Self::recv_many`] for blocking contexts.
    ///
    /// The same conditions as in [`Self::blocking_recv`] apply.
    #[track_caller]
    #[cfg(feature = "sync")]
    #[cfg_attr(docsrs, doc(alias = "recv_many_blocking"))]
    pub fn blocking_recv_many(&mut self, buffer: &mut Vec<T>, limit: usize) -> usize {
        crate::future::block_on(self.recv_many(buffer, limit))
    }

    /// Closes the receiving half of a channel, without dropping it.
    ///
    /// This prevents any further messages from being sent on the channel while
    /// still enabling the receiver to drain messages that are buffered.
    ///
    /// To guarantee that no messages are dropped, after calling `close()`,
    /// `recv()` must be called until `None` is returned.
    pub fn close(&mut self) {
        self.chan.close();
    }

    /// Checks if a channel is closed.
    ///
    /// This method returns `true` if the channel has been closed. The channel is closed
    /// when all [`UnboundedSender`] have been dropped, or when [`UnboundedReceiver::close`] is called.
    ///
    /// [`UnboundedSender`]: crate::sync::mpsc::UnboundedSender
    /// [`UnboundedReceiver::close`]: crate::sync::mpsc::UnboundedReceiver::close
    ///
    /// # Examples
    /// ```
    /// use tokio::sync::mpsc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (_tx, mut rx) = mpsc::unbounded_channel::<()>();
    ///     assert!(!rx.is_closed());
    ///
    ///     rx.close();
    ///
    ///     assert!(rx.is_closed());
    /// }
    /// ```
    pub fn is_closed(&self) -> bool {
        self.chan.is_closed()
    }

    /// Checks if a channel is empty.
    ///
    /// This method returns `true` if the channel has no messages.
    ///
    /// # Examples
    /// ```
    /// use tokio::sync::mpsc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, rx) = mpsc::unbounded_channel();
    ///     assert!(rx.is_empty());
    ///
    ///     tx.send(0).unwrap();
    ///     assert!(!rx.is_empty());
    /// }
    ///
    /// ```
    pub fn is_empty(&self) -> bool {
        self.chan.is_empty()
    }

    /// Returns the number of messages in the channel.
    ///
    /// # Examples
    /// ```
    /// use tokio::sync::mpsc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, rx) = mpsc::unbounded_channel();
    ///     assert_eq!(0, rx.len());
    ///
    ///     tx.send(0).unwrap();
    ///     assert_eq!(1, rx.len());
    /// }
    /// ```
    pub fn len(&self) -> usize {
        self.chan.len()
    }

    /// Polls to receive the next message on this channel.
    ///
    /// This method returns:
    ///
    ///  * `Poll::Pending` if no messages are available but the channel is not
    ///    closed, or if a spurious failure happens.
    ///  * `Poll::Ready(Some(message))` if a message is available.
    ///  * `Poll::Ready(None)` if the channel has been closed and all messages
    ///    sent before it was closed have been received.
    ///
    /// When the method returns `Poll::Pending`, the `Waker` in the provided
    /// `Context` is scheduled to receive a wakeup when a message is sent on any
    /// receiver, or when the channel is closed.  Note that on multiple calls to
    /// `poll_recv` or `poll_recv_many`, only the `Waker` from the `Context`
    /// passed to the most recent call is scheduled to receive a wakeup.
    ///
    /// If this method returns `Poll::Pending` due to a spurious failure, then
    /// the `Waker` will be notified when the situation causing the spurious
    /// failure has been resolved. Note that receiving such a wakeup does not
    /// guarantee that the next call will succeed — it could fail with another
    /// spurious failure.
    pub fn poll_recv(&mut self, cx: &mut Context<'_>) -> Poll<Option<T>> {
        self.chan.recv(cx)
    }

    /// Polls to receive multiple messages on this channel, extending the provided buffer.
    ///
    /// This method returns:
    /// * `Poll::Pending` if no messages are available but the channel is not closed, or if a
    ///   spurious failure happens.
    /// * `Poll::Ready(count)` where `count` is the number of messages successfully received and
    ///   stored in `buffer`. This can be less than, or equal to, `limit`.
    /// * `Poll::Ready(0)` if `limit` is set to zero or when the channel is closed.
    ///
    /// When the method returns `Poll::Pending`, the `Waker` in the provided
    /// `Context` is scheduled to receive a wakeup when a message is sent on any
    /// receiver, or when the channel is closed.  Note that on multiple calls to
    /// `poll_recv` or `poll_recv_many`, only the `Waker` from the `Context`
    /// passed to the most recent call is scheduled to receive a wakeup.
    ///
    /// Note that this method does not guarantee that exactly `limit` messages
    /// are received. Rather, if at least one message is available, it returns
    /// as many messages as it can up to the given limit. This method returns
    /// zero only if the channel is closed (or if `limit` is zero).
    ///
    /// # Examples
    ///
    /// ```
    /// use std::task::{Context, Poll};
    /// use std::pin::Pin;
    /// use tokio::sync::mpsc;
    /// use futures::Future;
    ///
    /// struct MyReceiverFuture<'a> {
    ///     receiver: mpsc::UnboundedReceiver<i32>,
    ///     buffer: &'a mut Vec<i32>,
    ///     limit: usize,
    /// }
    ///
    /// impl<'a> Future for MyReceiverFuture<'a> {
    ///     type Output = usize; // Number of messages received
    ///
    ///     fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
    ///         let MyReceiverFuture { receiver, buffer, limit } = &mut *self;
    ///
    ///         // Now `receiver` and `buffer` are mutable references, and `limit` is copied
    ///         match receiver.poll_recv_many(cx, *buffer, *limit) {
    ///             Poll::Pending => Poll::Pending,
    ///             Poll::Ready(count) => Poll::Ready(count),
    ///         }
    ///     }
    /// }
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx, rx) = mpsc::unbounded_channel::<i32>();
    ///     let mut buffer = Vec::new();
    ///
    ///     let my_receiver_future = MyReceiverFuture {
    ///         receiver: rx,
    ///         buffer: &mut buffer,
    ///         limit: 3,
    ///     };
    ///
    ///     for i in 0..10 {
    ///         tx.send(i).expect("Unable to send integer");
    ///     }
    ///
    ///     let count = my_receiver_future.await;
    ///     assert_eq!(count, 3);
    ///     assert_eq!(buffer, vec![0,1,2])
    /// }
    /// ```
    pub fn poll_recv_many(
        &mut self,
        cx: &mut Context<'_>,
        buffer: &mut Vec<T>,
        limit: usize,
    ) -> Poll<usize> {
        self.chan.recv_many(cx, buffer, limit)
    }

    /// Returns the number of [`UnboundedSender`] handles.
    pub fn sender_strong_count(&self) -> usize {
        self.chan.sender_strong_count()
    }

    /// Returns the number of [`WeakUnboundedSender`] handles.
    pub fn sender_weak_count(&self) -> usize {
        self.chan.sender_weak_count()
    }
}

impl<T> UnboundedSender<T> {
    pub(crate) fn new(chan: chan::Tx<T, Semaphore>) -> UnboundedSender<T> {
        UnboundedSender { chan }
    }

    /// Attempts to send a message on this `UnboundedSender` without blocking.
    ///
    /// This method is not marked async because sending a message to an unbounded channel
    /// never requires any form of waiting. Because of this, the `send` method can be
    /// used in both synchronous and asynchronous code without problems.
    ///
    /// If the receive half of the channel is closed, either due to [`close`]
    /// being called or the [`UnboundedReceiver`] having been dropped, this
    /// function returns an error. The error includes the value passed to `send`.
    ///
    /// [`close`]: UnboundedReceiver::close
    /// [`UnboundedReceiver`]: UnboundedReceiver
    pub fn send(&self, message: T) -> Result<(), SendError<T>> {
        if !self.inc_num_messages() {
            return Err(SendError(message));
        }

        self.chan.send(message);
        Ok(())
    }

    fn inc_num_messages(&self) -> bool {
        use std::process;
        use std::sync::atomic::Ordering::{AcqRel, Acquire};

        let mut curr = self.chan.semaphore().0.load(Acquire);

        loop {
            if curr & 1 == 1 {
                return false;
            }

            if curr == usize::MAX ^ 1 {
                // Overflowed the ref count. There is no safe way to recover, so
                // abort the process. In practice, this should never happen.
                process::abort()
            }

            match self
                .chan
                .semaphore()
                .0
                .compare_exchange(curr, curr + 2, AcqRel, Acquire)
            {
                Ok(_) => return true,
                Err(actual) => {
                    curr = actual;
                }
            }
        }
    }

    /// Completes when the receiver has dropped.
    ///
    /// This allows the producers to get notified when interest in the produced
    /// values is canceled and immediately stop doing work.
    ///
    /// # Cancel safety
    ///
    /// This method is cancel safe. Once the channel is closed, it stays closed
    /// forever and all future calls to `closed` will return immediately.
    ///
    /// # Examples
    ///
    /// ```
    /// use tokio::sync::mpsc;
    ///
    /// #[tokio::main]
    /// async fn main() {
    ///     let (tx1, rx) = mpsc::unbounded_channel::<()>();
    ///     let tx2 = tx1.clone();
    ///     let tx3 = tx1.clone();
    ///     let tx4 = tx1.clone();
    ///     let tx5 = tx1.clone();
    ///     tokio::spawn(async move {
    ///         drop(rx);
    ///     });
    ///
    ///     futures::join!(
    ///         tx1.closed(),
    ///         tx2.closed(),
    ///         tx3.closed(),
    ///         tx4.closed(),
    ///         tx5.closed()
    ///     );
    ////     println!("Receiver dropped");
    /// }
    /// ```
    pub async fn closed(&self) {
        self.chan.closed().await;
    }

    /// Checks if the channel has been closed. This happens when the
    /// [`UnboundedReceiver`] is dropped, or when the
    /// [`UnboundedReceiver::close`] method is called.
    ///
    /// [`UnboundedReceiver`]: crate::sync::mpsc::UnboundedReceiver
    /// [`UnboundedReceiver::close`]: crate::sync::mpsc::UnboundedReceiver::close
    ///
    /// ```
    /// let (tx, rx) = tokio::sync::mpsc::unbounded_channel::<()>();
    /// assert!(!tx.is_closed());
    ///
    /// let tx2 = tx.clone();
    /// assert!(!tx2.is_closed());
    ///
    /// drop(rx);
    /// assert!(tx.is_closed());
    /// assert!(tx2.is_closed());
    /// ```
    pub fn is_closed(&self) -> bool {
        self.chan.is_closed()
    }

    /// Returns `true` if senders belong to the same channel.
    ///
    /// # Examples
    ///
    /// ```
    /// let (tx, rx) = tokio::sync::mpsc::unbounded_channel::<()>();
    /// let  tx2 = tx.clone();
    /// assert!(tx.same_channel(&tx2));
    ///
    /// let (tx3, rx3) = tokio::sync::mpsc::unbounded_channel::<()>();
    /// assert!(!tx3.same_channel(&tx2));
    /// ```
    pub fn same_channel(&self, other: &Self) -> bool {
        self.chan.same_channel(&other.chan)
    }

    /// Converts the `UnboundedSender` to a [`WeakUnboundedSender`] that does not count
    /// towards RAII semantics, i.e. if all `UnboundedSender` instances of the
    /// channel were dropped and only `WeakUnboundedSender` instances remain,
    /// the channel is closed.
    #[must_use = "Downgrade creates a WeakSender without destroying the original non-weak sender."]
    pub fn downgrade(&self) -> WeakUnboundedSender<T> {
        WeakUnboundedSender {
            chan: self.chan.downgrade(),
        }
    }

    /// Returns the number of [`UnboundedSender`] handles.
    pub fn strong_count(&self) -> usize {
        self.chan.strong_count()
    }

    /// Returns the number of [`WeakUnboundedSender`] handles.
    pub fn weak_count(&self) -> usize {
        self.chan.weak_count()
    }
}

impl<T> Clone for WeakUnboundedSender<T> {
    fn clone(&self) -> Self {
        self.chan.increment_weak_count();

        WeakUnboundedSender {
            chan: self.chan.clone(),
        }
    }
}

impl<T> Drop for WeakUnboundedSender<T> {
    fn drop(&mut self) {
        self.chan.decrement_weak_count();
    }
}

impl<T> WeakUnboundedSender<T> {
    /// Tries to convert a `WeakUnboundedSender` into an [`UnboundedSender`].
    /// This will return `Some` if there are other `Sender` instances alive and
    /// the channel wasn't previously dropped, otherwise `None` is returned.
    pub fn upgrade(&self) -> Option<UnboundedSender<T>> {
        chan::Tx::upgrade(self.chan.clone()).map(UnboundedSender::new)
    }

    /// Returns the number of [`UnboundedSender`] handles.
    pub fn strong_count(&self) -> usize {
        self.chan.strong_count()
    }

    /// Returns the number of [`WeakUnboundedSender`] handles.
    pub fn weak_count(&self) -> usize {
        self.chan.weak_count()
    }
}

impl<T> fmt::Debug for WeakUnboundedSender<T> {
    fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result {
        fmt.debug_struct("WeakUnboundedSender").finish()
    }
}