libm/math/jnf.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
/*
* Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
use super::{fabsf, j0f, j1f, logf, y0f, y1f};
/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the first kind (f32).
pub fn jnf(n: i32, mut x: f32) -> f32 {
let mut ix: u32;
let mut nm1: i32;
let mut sign: bool;
let mut i: i32;
let mut a: f32;
let mut b: f32;
let mut temp: f32;
ix = x.to_bits();
sign = (ix >> 31) != 0;
ix &= 0x7fffffff;
if ix > 0x7f800000 {
/* nan */
return x;
}
/* J(-n,x) = J(n,-x), use |n|-1 to avoid overflow in -n */
if n == 0 {
return j0f(x);
}
if n < 0 {
nm1 = -(n + 1);
x = -x;
sign = !sign;
} else {
nm1 = n - 1;
}
if nm1 == 0 {
return j1f(x);
}
sign &= (n & 1) != 0; /* even n: 0, odd n: signbit(x) */
x = fabsf(x);
if ix == 0 || ix == 0x7f800000 {
/* if x is 0 or inf */
b = 0.0;
} else if (nm1 as f32) < x {
/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
a = j0f(x);
b = j1f(x);
i = 0;
while i < nm1 {
i += 1;
temp = b;
b = b * (2.0 * (i as f32) / x) - a;
a = temp;
}
} else {
if ix < 0x35800000 {
/* x < 2**-20 */
/* x is tiny, return the first Taylor expansion of J(n,x)
* J(n,x) = 1/n!*(x/2)^n - ...
*/
if nm1 > 8 {
/* underflow */
nm1 = 8;
}
temp = 0.5 * x;
b = temp;
a = 1.0;
i = 2;
while i <= nm1 + 1 {
a *= i as f32; /* a = n! */
b *= temp; /* b = (x/2)^n */
i += 1;
}
b = b / a;
} else {
/* use backward recurrence */
/* x x^2 x^2
* J(n,x)/J(n-1,x) = ---- ------ ------ .....
* 2n - 2(n+1) - 2(n+2)
*
* 1 1 1
* (for large x) = ---- ------ ------ .....
* 2n 2(n+1) 2(n+2)
* -- - ------ - ------ -
* x x x
*
* Let w = 2n/x and h=2/x, then the above quotient
* is equal to the continued fraction:
* 1
* = -----------------------
* 1
* w - -----------------
* 1
* w+h - ---------
* w+2h - ...
*
* To determine how many terms needed, let
* Q(0) = w, Q(1) = w(w+h) - 1,
* Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
* When Q(k) > 1e4 good for single
* When Q(k) > 1e9 good for double
* When Q(k) > 1e17 good for quadruple
*/
/* determine k */
let mut t: f32;
let mut q0: f32;
let mut q1: f32;
let mut w: f32;
let h: f32;
let mut z: f32;
let mut tmp: f32;
let nf: f32;
let mut k: i32;
nf = (nm1 as f32) + 1.0;
w = 2.0 * (nf as f32) / x;
h = 2.0 / x;
z = w + h;
q0 = w;
q1 = w * z - 1.0;
k = 1;
while q1 < 1.0e4 {
k += 1;
z += h;
tmp = z * q1 - q0;
q0 = q1;
q1 = tmp;
}
t = 0.0;
i = k;
while i >= 0 {
t = 1.0 / (2.0 * ((i as f32) + nf) / x - t);
i -= 1;
}
a = t;
b = 1.0;
/* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
* Hence, if n*(log(2n/x)) > ...
* single 8.8722839355e+01
* double 7.09782712893383973096e+02
* long double 1.1356523406294143949491931077970765006170e+04
* then recurrent value may overflow and the result is
* likely underflow to zero
*/
tmp = nf * logf(fabsf(w));
if tmp < 88.721679688 {
i = nm1;
while i > 0 {
temp = b;
b = 2.0 * (i as f32) * b / x - a;
a = temp;
i -= 1;
}
} else {
i = nm1;
while i > 0 {
temp = b;
b = 2.0 * (i as f32) * b / x - a;
a = temp;
/* scale b to avoid spurious overflow */
let x1p60 = f32::from_bits(0x5d800000); // 0x1p60 == 2^60
if b > x1p60 {
a /= b;
t /= b;
b = 1.0;
}
i -= 1;
}
}
z = j0f(x);
w = j1f(x);
if fabsf(z) >= fabsf(w) {
b = t * z / b;
} else {
b = t * w / a;
}
}
}
if sign { -b } else { b }
}
/// Integer order of the [Bessel function](https://en.wikipedia.org/wiki/Bessel_function) of the second kind (f32).
pub fn ynf(n: i32, x: f32) -> f32 {
let mut ix: u32;
let mut ib: u32;
let nm1: i32;
let mut sign: bool;
let mut i: i32;
let mut a: f32;
let mut b: f32;
let mut temp: f32;
ix = x.to_bits();
sign = (ix >> 31) != 0;
ix &= 0x7fffffff;
if ix > 0x7f800000 {
/* nan */
return x;
}
if sign && ix != 0 {
/* x < 0 */
return 0.0 / 0.0;
}
if ix == 0x7f800000 {
return 0.0;
}
if n == 0 {
return y0f(x);
}
if n < 0 {
nm1 = -(n + 1);
sign = (n & 1) != 0;
} else {
nm1 = n - 1;
sign = false;
}
if nm1 == 0 {
if sign {
return -y1f(x);
} else {
return y1f(x);
}
}
a = y0f(x);
b = y1f(x);
/* quit if b is -inf */
ib = b.to_bits();
i = 0;
while i < nm1 && ib != 0xff800000 {
i += 1;
temp = b;
b = (2.0 * (i as f32) / x) * b - a;
ib = b.to_bits();
a = temp;
}
if sign { -b } else { b }
}