rand_distr/hypergeometric.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422
//! The hypergeometric distribution.
use crate::Distribution;
use rand::Rng;
use rand::distributions::uniform::Uniform;
use core::fmt;
#[allow(unused_imports)]
use num_traits::Float;
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
enum SamplingMethod {
InverseTransform{ initial_p: f64, initial_x: i64 },
RejectionAcceptance{
m: f64,
a: f64,
lambda_l: f64,
lambda_r: f64,
x_l: f64,
x_r: f64,
p1: f64,
p2: f64,
p3: f64
},
}
/// The hypergeometric distribution `Hypergeometric(N, K, n)`.
///
/// This is the distribution of successes in samples of size `n` drawn without
/// replacement from a population of size `N` containing `K` success states.
/// It has the density function:
/// `f(k) = binomial(K, k) * binomial(N-K, n-k) / binomial(N, n)`,
/// where `binomial(a, b) = a! / (b! * (a - b)!)`.
///
/// The [binomial distribution](crate::Binomial) is the analogous distribution
/// for sampling with replacement. It is a good approximation when the population
/// size is much larger than the sample size.
///
/// # Example
///
/// ```
/// use rand_distr::{Distribution, Hypergeometric};
///
/// let hypergeo = Hypergeometric::new(60, 24, 7).unwrap();
/// let v = hypergeo.sample(&mut rand::thread_rng());
/// println!("{} is from a hypergeometric distribution", v);
/// ```
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serde1", derive(serde::Serialize, serde::Deserialize))]
pub struct Hypergeometric {
n1: u64,
n2: u64,
k: u64,
offset_x: i64,
sign_x: i64,
sampling_method: SamplingMethod,
}
/// Error type returned from `Hypergeometric::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `total_population_size` is too large, causing floating point underflow.
PopulationTooLarge,
/// `population_with_feature > total_population_size`.
ProbabilityTooLarge,
/// `sample_size > total_population_size`.
SampleSizeTooLarge,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::PopulationTooLarge => "total_population_size is too large causing underflow in geometric distribution",
Error::ProbabilityTooLarge => "population_with_feature > total_population_size in geometric distribution",
Error::SampleSizeTooLarge => "sample_size > total_population_size in geometric distribution",
})
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for Error {}
// evaluate fact(numerator.0)*fact(numerator.1) / fact(denominator.0)*fact(denominator.1)
fn fraction_of_products_of_factorials(numerator: (u64, u64), denominator: (u64, u64)) -> f64 {
let min_top = u64::min(numerator.0, numerator.1);
let min_bottom = u64::min(denominator.0, denominator.1);
// the factorial of this will cancel out:
let min_all = u64::min(min_top, min_bottom);
let max_top = u64::max(numerator.0, numerator.1);
let max_bottom = u64::max(denominator.0, denominator.1);
let max_all = u64::max(max_top, max_bottom);
let mut result = 1.0;
for i in (min_all + 1)..=max_all {
if i <= min_top {
result *= i as f64;
}
if i <= min_bottom {
result /= i as f64;
}
if i <= max_top {
result *= i as f64;
}
if i <= max_bottom {
result /= i as f64;
}
}
result
}
fn ln_of_factorial(v: f64) -> f64 {
// the paper calls for ln(v!), but also wants to pass in fractions,
// so we need to use Stirling's approximation to fill in the gaps:
v * v.ln() - v
}
impl Hypergeometric {
/// Constructs a new `Hypergeometric` with the shape parameters
/// `N = total_population_size`,
/// `K = population_with_feature`,
/// `n = sample_size`.
#[allow(clippy::many_single_char_names)] // Same names as in the reference.
pub fn new(total_population_size: u64, population_with_feature: u64, sample_size: u64) -> Result<Self, Error> {
if population_with_feature > total_population_size {
return Err(Error::ProbabilityTooLarge);
}
if sample_size > total_population_size {
return Err(Error::SampleSizeTooLarge);
}
// set-up constants as function of original parameters
let n = total_population_size;
let (mut sign_x, mut offset_x) = (1, 0);
let (n1, n2) = {
// switch around success and failure states if necessary to ensure n1 <= n2
let population_without_feature = n - population_with_feature;
if population_with_feature > population_without_feature {
sign_x = -1;
offset_x = sample_size as i64;
(population_without_feature, population_with_feature)
} else {
(population_with_feature, population_without_feature)
}
};
// when sampling more than half the total population, take the smaller
// group as sampled instead (we can then return n1-x instead).
//
// Note: the boundary condition given in the paper is `sample_size < n / 2`;
// we're deviating here, because when n is even, it doesn't matter whether
// we switch here or not, but when n is odd `n/2 < n - n/2`, so switching
// when `k == n/2`, we'd actually be taking the _larger_ group as sampled.
let k = if sample_size <= n / 2 {
sample_size
} else {
offset_x += n1 as i64 * sign_x;
sign_x *= -1;
n - sample_size
};
// Algorithm H2PE has bounded runtime only if `M - max(0, k-n2) >= 10`,
// where `M` is the mode of the distribution.
// Use algorithm HIN for the remaining parameter space.
//
// Voratas Kachitvichyanukul and Bruce W. Schmeiser. 1985. Computer
// generation of hypergeometric random variates.
// J. Statist. Comput. Simul. Vol.22 (August 1985), 127-145
// https://www.researchgate.net/publication/233212638
const HIN_THRESHOLD: f64 = 10.0;
let m = ((k + 1) as f64 * (n1 + 1) as f64 / (n + 2) as f64).floor();
let sampling_method = if m - f64::max(0.0, k as f64 - n2 as f64) < HIN_THRESHOLD {
let (initial_p, initial_x) = if k < n2 {
(fraction_of_products_of_factorials((n2, n - k), (n, n2 - k)), 0)
} else {
(fraction_of_products_of_factorials((n1, k), (n, k - n2)), (k - n2) as i64)
};
if initial_p <= 0.0 || !initial_p.is_finite() {
return Err(Error::PopulationTooLarge);
}
SamplingMethod::InverseTransform { initial_p, initial_x }
} else {
let a = ln_of_factorial(m) +
ln_of_factorial(n1 as f64 - m) +
ln_of_factorial(k as f64 - m) +
ln_of_factorial((n2 - k) as f64 + m);
let numerator = (n - k) as f64 * k as f64 * n1 as f64 * n2 as f64;
let denominator = (n - 1) as f64 * n as f64 * n as f64;
let d = 1.5 * (numerator / denominator).sqrt() + 0.5;
let x_l = m - d + 0.5;
let x_r = m + d + 0.5;
let k_l = f64::exp(a -
ln_of_factorial(x_l) -
ln_of_factorial(n1 as f64 - x_l) -
ln_of_factorial(k as f64 - x_l) -
ln_of_factorial((n2 - k) as f64 + x_l));
let k_r = f64::exp(a -
ln_of_factorial(x_r - 1.0) -
ln_of_factorial(n1 as f64 - x_r + 1.0) -
ln_of_factorial(k as f64 - x_r + 1.0) -
ln_of_factorial((n2 - k) as f64 + x_r - 1.0));
let numerator = x_l * ((n2 - k) as f64 + x_l);
let denominator = (n1 as f64 - x_l + 1.0) * (k as f64 - x_l + 1.0);
let lambda_l = -((numerator / denominator).ln());
let numerator = (n1 as f64 - x_r + 1.0) * (k as f64 - x_r + 1.0);
let denominator = x_r * ((n2 - k) as f64 + x_r);
let lambda_r = -((numerator / denominator).ln());
// the paper literally gives `p2 + kL/lambdaL` where it (probably)
// should have been `p2 <- p1 + kL/lambdaL`; another print error?!
let p1 = 2.0 * d;
let p2 = p1 + k_l / lambda_l;
let p3 = p2 + k_r / lambda_r;
SamplingMethod::RejectionAcceptance {
m, a, lambda_l, lambda_r, x_l, x_r, p1, p2, p3
}
};
Ok(Hypergeometric { n1, n2, k, offset_x, sign_x, sampling_method })
}
}
impl Distribution<u64> for Hypergeometric {
#[allow(clippy::many_single_char_names)] // Same names as in the reference.
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> u64 {
use SamplingMethod::*;
let Hypergeometric { n1, n2, k, sign_x, offset_x, sampling_method } = *self;
let x = match sampling_method {
InverseTransform { initial_p: mut p, initial_x: mut x } => {
let mut u = rng.gen::<f64>();
while u > p && x < k as i64 { // the paper erroneously uses `until n < p`, which doesn't make any sense
u -= p;
p *= ((n1 as i64 - x as i64) * (k as i64 - x as i64)) as f64;
p /= ((x as i64 + 1) * (n2 as i64 - k as i64 + 1 + x as i64)) as f64;
x += 1;
}
x
},
RejectionAcceptance { m, a, lambda_l, lambda_r, x_l, x_r, p1, p2, p3 } => {
let distr_region_select = Uniform::new(0.0, p3);
loop {
let (y, v) = loop {
let u = distr_region_select.sample(rng);
let v = rng.gen::<f64>(); // for the accept/reject decision
if u <= p1 {
// Region 1, central bell
let y = (x_l + u).floor();
break (y, v);
} else if u <= p2 {
// Region 2, left exponential tail
let y = (x_l + v.ln() / lambda_l).floor();
if y as i64 >= i64::max(0, k as i64 - n2 as i64) {
let v = v * (u - p1) * lambda_l;
break (y, v);
}
} else {
// Region 3, right exponential tail
let y = (x_r - v.ln() / lambda_r).floor();
if y as u64 <= u64::min(n1, k) {
let v = v * (u - p2) * lambda_r;
break (y, v);
}
}
};
// Step 4: Acceptance/Rejection Comparison
if m < 100.0 || y <= 50.0 {
// Step 4.1: evaluate f(y) via recursive relationship
let mut f = 1.0;
if m < y {
for i in (m as u64 + 1)..=(y as u64) {
f *= (n1 - i + 1) as f64 * (k - i + 1) as f64;
f /= i as f64 * (n2 - k + i) as f64;
}
} else {
for i in (y as u64 + 1)..=(m as u64) {
f *= i as f64 * (n2 - k + i) as f64;
f /= (n1 - i) as f64 * (k - i) as f64;
}
}
if v <= f { break y as i64; }
} else {
// Step 4.2: Squeezing
let y1 = y + 1.0;
let ym = y - m;
let yn = n1 as f64 - y + 1.0;
let yk = k as f64 - y + 1.0;
let nk = n2 as f64 - k as f64 + y1;
let r = -ym / y1;
let s = ym / yn;
let t = ym / yk;
let e = -ym / nk;
let g = yn * yk / (y1 * nk) - 1.0;
let dg = if g < 0.0 {
1.0 + g
} else {
1.0
};
let gu = g * (1.0 + g * (-0.5 + g / 3.0));
let gl = gu - g.powi(4) / (4.0 * dg);
let xm = m + 0.5;
let xn = n1 as f64 - m + 0.5;
let xk = k as f64 - m + 0.5;
let nm = n2 as f64 - k as f64 + xm;
let ub = xm * r * (1.0 + r * (-0.5 + r / 3.0)) +
xn * s * (1.0 + s * (-0.5 + s / 3.0)) +
xk * t * (1.0 + t * (-0.5 + t / 3.0)) +
nm * e * (1.0 + e * (-0.5 + e / 3.0)) +
y * gu - m * gl + 0.0034;
let av = v.ln();
if av > ub { continue; }
let dr = if r < 0.0 {
xm * r.powi(4) / (1.0 + r)
} else {
xm * r.powi(4)
};
let ds = if s < 0.0 {
xn * s.powi(4) / (1.0 + s)
} else {
xn * s.powi(4)
};
let dt = if t < 0.0 {
xk * t.powi(4) / (1.0 + t)
} else {
xk * t.powi(4)
};
let de = if e < 0.0 {
nm * e.powi(4) / (1.0 + e)
} else {
nm * e.powi(4)
};
if av < ub - 0.25*(dr + ds + dt + de) + (y + m)*(gl - gu) - 0.0078 {
break y as i64;
}
// Step 4.3: Final Acceptance/Rejection Test
let av_critical = a -
ln_of_factorial(y) -
ln_of_factorial(n1 as f64 - y) -
ln_of_factorial(k as f64 - y) -
ln_of_factorial((n2 - k) as f64 + y);
if v.ln() <= av_critical {
break y as i64;
}
}
}
}
};
(offset_x + sign_x * x) as u64
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_hypergeometric_invalid_params() {
assert!(Hypergeometric::new(100, 101, 5).is_err());
assert!(Hypergeometric::new(100, 10, 101).is_err());
assert!(Hypergeometric::new(100, 101, 101).is_err());
assert!(Hypergeometric::new(100, 10, 5).is_ok());
}
fn test_hypergeometric_mean_and_variance<R: Rng>(n: u64, k: u64, s: u64, rng: &mut R)
{
let distr = Hypergeometric::new(n, k, s).unwrap();
let expected_mean = s as f64 * k as f64 / n as f64;
let expected_variance = {
let numerator = (s * k * (n - k) * (n - s)) as f64;
let denominator = (n * n * (n - 1)) as f64;
numerator / denominator
};
let mut results = [0.0; 1000];
for i in results.iter_mut() {
*i = distr.sample(rng) as f64;
}
let mean = results.iter().sum::<f64>() / results.len() as f64;
assert!((mean as f64 - expected_mean).abs() < expected_mean / 50.0);
let variance =
results.iter().map(|x| (x - mean) * (x - mean)).sum::<f64>() / results.len() as f64;
assert!((variance - expected_variance).abs() < expected_variance / 10.0);
}
#[test]
fn test_hypergeometric() {
let mut rng = crate::test::rng(737);
// exercise algorithm HIN:
test_hypergeometric_mean_and_variance(500, 400, 30, &mut rng);
test_hypergeometric_mean_and_variance(250, 200, 230, &mut rng);
test_hypergeometric_mean_and_variance(100, 20, 6, &mut rng);
test_hypergeometric_mean_and_variance(50, 10, 47, &mut rng);
// exercise algorithm H2PE
test_hypergeometric_mean_and_variance(5000, 2500, 500, &mut rng);
test_hypergeometric_mean_and_variance(10100, 10000, 1000, &mut rng);
test_hypergeometric_mean_and_variance(100100, 100, 10000, &mut rng);
}
}