arrayvec/
arrayvec.rs

1
2use std::cmp;
3use std::iter;
4use std::mem;
5use std::ops::{Bound, Deref, DerefMut, RangeBounds};
6use std::ptr;
7use std::slice;
8
9// extra traits
10use std::borrow::{Borrow, BorrowMut};
11use std::hash::{Hash, Hasher};
12use std::fmt;
13
14#[cfg(feature="std")]
15use std::io;
16
17use std::mem::ManuallyDrop;
18use std::mem::MaybeUninit;
19
20#[cfg(feature="serde")]
21use serde::{Serialize, Deserialize, Serializer, Deserializer};
22
23use crate::LenUint;
24use crate::errors::CapacityError;
25use crate::arrayvec_impl::ArrayVecImpl;
26use crate::utils::MakeMaybeUninit;
27
28/// A vector with a fixed capacity.
29///
30/// The `ArrayVec` is a vector backed by a fixed size array. It keeps track of
31/// the number of initialized elements. The `ArrayVec<T, CAP>` is parameterized
32/// by `T` for the element type and `CAP` for the maximum capacity.
33///
34/// `CAP` is of type `usize` but is range limited to `u32::MAX`; attempting to create larger
35/// arrayvecs with larger capacity will panic.
36///
37/// The vector is a contiguous value (storing the elements inline) that you can store directly on
38/// the stack if needed.
39///
40/// It offers a simple API but also dereferences to a slice, so that the full slice API is
41/// available. The ArrayVec can be converted into a by value iterator.
42#[repr(C)]
43pub struct ArrayVec<T, const CAP: usize> {
44    len: LenUint,
45    // the `len` first elements of the array are initialized
46    xs: [MaybeUninit<T>; CAP],
47}
48
49impl<T, const CAP: usize> Drop for ArrayVec<T, CAP> {
50    fn drop(&mut self) {
51        self.clear();
52
53        // MaybeUninit inhibits array's drop
54    }
55}
56
57macro_rules! panic_oob {
58    ($method_name:expr, $index:expr, $len:expr) => {
59        panic!(concat!("ArrayVec::", $method_name, ": index {} is out of bounds in vector of length {}"),
60               $index, $len)
61    }
62}
63
64impl<T, const CAP: usize> ArrayVec<T, CAP> {
65    /// Capacity
66    const CAPACITY: usize = CAP;
67
68    /// Create a new empty `ArrayVec`.
69    ///
70    /// The maximum capacity is given by the generic parameter `CAP`.
71    ///
72    /// ```
73    /// use arrayvec::ArrayVec;
74    ///
75    /// let mut array = ArrayVec::<_, 16>::new();
76    /// array.push(1);
77    /// array.push(2);
78    /// assert_eq!(&array[..], &[1, 2]);
79    /// assert_eq!(array.capacity(), 16);
80    /// ```
81    #[inline]
82    #[track_caller]
83    pub fn new() -> ArrayVec<T, CAP> {
84        assert_capacity_limit!(CAP);
85        unsafe {
86            ArrayVec { xs: MaybeUninit::uninit().assume_init(), len: 0 }
87        }
88    }
89
90    /// Create a new empty `ArrayVec` (const fn).
91    ///
92    /// The maximum capacity is given by the generic parameter `CAP`.
93    ///
94    /// ```
95    /// use arrayvec::ArrayVec;
96    ///
97    /// static ARRAY: ArrayVec<u8, 1024> = ArrayVec::new_const();
98    /// ```
99    pub const fn new_const() -> ArrayVec<T, CAP> {
100        assert_capacity_limit_const!(CAP);
101        ArrayVec { xs: MakeMaybeUninit::ARRAY, len: 0 }
102    }
103
104    /// Return the number of elements in the `ArrayVec`.
105    ///
106    /// ```
107    /// use arrayvec::ArrayVec;
108    ///
109    /// let mut array = ArrayVec::from([1, 2, 3]);
110    /// array.pop();
111    /// assert_eq!(array.len(), 2);
112    /// ```
113    #[inline(always)]
114    pub const fn len(&self) -> usize { self.len as usize }
115
116    /// Returns whether the `ArrayVec` is empty.
117    ///
118    /// ```
119    /// use arrayvec::ArrayVec;
120    ///
121    /// let mut array = ArrayVec::from([1]);
122    /// array.pop();
123    /// assert_eq!(array.is_empty(), true);
124    /// ```
125    #[inline]
126    pub const fn is_empty(&self) -> bool { self.len() == 0 }
127
128    /// Return the capacity of the `ArrayVec`.
129    ///
130    /// ```
131    /// use arrayvec::ArrayVec;
132    ///
133    /// let array = ArrayVec::from([1, 2, 3]);
134    /// assert_eq!(array.capacity(), 3);
135    /// ```
136    #[inline(always)]
137    pub const fn capacity(&self) -> usize { CAP }
138
139    /// Return true if the `ArrayVec` is completely filled to its capacity, false otherwise.
140    ///
141    /// ```
142    /// use arrayvec::ArrayVec;
143    ///
144    /// let mut array = ArrayVec::<_, 1>::new();
145    /// assert!(!array.is_full());
146    /// array.push(1);
147    /// assert!(array.is_full());
148    /// ```
149    pub const fn is_full(&self) -> bool { self.len() == self.capacity() }
150
151    /// Returns the capacity left in the `ArrayVec`.
152    ///
153    /// ```
154    /// use arrayvec::ArrayVec;
155    ///
156    /// let mut array = ArrayVec::from([1, 2, 3]);
157    /// array.pop();
158    /// assert_eq!(array.remaining_capacity(), 1);
159    /// ```
160    pub const fn remaining_capacity(&self) -> usize {
161        self.capacity() - self.len()
162    }
163
164    /// Push `element` to the end of the vector.
165    ///
166    /// ***Panics*** if the vector is already full.
167    ///
168    /// ```
169    /// use arrayvec::ArrayVec;
170    ///
171    /// let mut array = ArrayVec::<_, 2>::new();
172    ///
173    /// array.push(1);
174    /// array.push(2);
175    ///
176    /// assert_eq!(&array[..], &[1, 2]);
177    /// ```
178    #[track_caller]
179    pub fn push(&mut self, element: T) {
180        ArrayVecImpl::push(self, element)
181    }
182
183    /// Push `element` to the end of the vector.
184    ///
185    /// Return `Ok` if the push succeeds, or return an error if the vector
186    /// is already full.
187    ///
188    /// ```
189    /// use arrayvec::ArrayVec;
190    ///
191    /// let mut array = ArrayVec::<_, 2>::new();
192    ///
193    /// let push1 = array.try_push(1);
194    /// let push2 = array.try_push(2);
195    ///
196    /// assert!(push1.is_ok());
197    /// assert!(push2.is_ok());
198    ///
199    /// assert_eq!(&array[..], &[1, 2]);
200    ///
201    /// let overflow = array.try_push(3);
202    ///
203    /// assert!(overflow.is_err());
204    /// ```
205    pub fn try_push(&mut self, element: T) -> Result<(), CapacityError<T>> {
206        ArrayVecImpl::try_push(self, element)
207    }
208
209    /// Push `element` to the end of the vector without checking the capacity.
210    ///
211    /// It is up to the caller to ensure the capacity of the vector is
212    /// sufficiently large.
213    ///
214    /// This method uses *debug assertions* to check that the arrayvec is not full.
215    ///
216    /// ```
217    /// use arrayvec::ArrayVec;
218    ///
219    /// let mut array = ArrayVec::<_, 2>::new();
220    ///
221    /// if array.len() + 2 <= array.capacity() {
222    ///     unsafe {
223    ///         array.push_unchecked(1);
224    ///         array.push_unchecked(2);
225    ///     }
226    /// }
227    ///
228    /// assert_eq!(&array[..], &[1, 2]);
229    /// ```
230    pub unsafe fn push_unchecked(&mut self, element: T) {
231        ArrayVecImpl::push_unchecked(self, element)
232    }
233
234    /// Shortens the vector, keeping the first `len` elements and dropping
235    /// the rest.
236    ///
237    /// If `len` is greater than the vector’s current length this has no
238    /// effect.
239    ///
240    /// ```
241    /// use arrayvec::ArrayVec;
242    ///
243    /// let mut array = ArrayVec::from([1, 2, 3, 4, 5]);
244    /// array.truncate(3);
245    /// assert_eq!(&array[..], &[1, 2, 3]);
246    /// array.truncate(4);
247    /// assert_eq!(&array[..], &[1, 2, 3]);
248    /// ```
249    pub fn truncate(&mut self, new_len: usize) {
250        ArrayVecImpl::truncate(self, new_len)
251    }
252
253    /// Remove all elements in the vector.
254    pub fn clear(&mut self) {
255        ArrayVecImpl::clear(self)
256    }
257
258
259    /// Get pointer to where element at `index` would be
260    unsafe fn get_unchecked_ptr(&mut self, index: usize) -> *mut T {
261        self.as_mut_ptr().add(index)
262    }
263
264    /// Insert `element` at position `index`.
265    ///
266    /// Shift up all elements after `index`.
267    ///
268    /// It is an error if the index is greater than the length or if the
269    /// arrayvec is full.
270    ///
271    /// ***Panics*** if the array is full or the `index` is out of bounds. See
272    /// `try_insert` for fallible version.
273    ///
274    /// ```
275    /// use arrayvec::ArrayVec;
276    ///
277    /// let mut array = ArrayVec::<_, 2>::new();
278    ///
279    /// array.insert(0, "x");
280    /// array.insert(0, "y");
281    /// assert_eq!(&array[..], &["y", "x"]);
282    ///
283    /// ```
284    #[track_caller]
285    pub fn insert(&mut self, index: usize, element: T) {
286        self.try_insert(index, element).unwrap()
287    }
288
289    /// Insert `element` at position `index`.
290    ///
291    /// Shift up all elements after `index`; the `index` must be less than
292    /// or equal to the length.
293    ///
294    /// Returns an error if vector is already at full capacity.
295    ///
296    /// ***Panics*** `index` is out of bounds.
297    ///
298    /// ```
299    /// use arrayvec::ArrayVec;
300    ///
301    /// let mut array = ArrayVec::<_, 2>::new();
302    ///
303    /// assert!(array.try_insert(0, "x").is_ok());
304    /// assert!(array.try_insert(0, "y").is_ok());
305    /// assert!(array.try_insert(0, "z").is_err());
306    /// assert_eq!(&array[..], &["y", "x"]);
307    ///
308    /// ```
309    pub fn try_insert(&mut self, index: usize, element: T) -> Result<(), CapacityError<T>> {
310        if index > self.len() {
311            panic_oob!("try_insert", index, self.len())
312        }
313        if self.len() == self.capacity() {
314            return Err(CapacityError::new(element));
315        }
316        let len = self.len();
317
318        // follows is just like Vec<T>
319        unsafe { // infallible
320            // The spot to put the new value
321            {
322                let p: *mut _ = self.get_unchecked_ptr(index);
323                // Shift everything over to make space. (Duplicating the
324                // `index`th element into two consecutive places.)
325                ptr::copy(p, p.offset(1), len - index);
326                // Write it in, overwriting the first copy of the `index`th
327                // element.
328                ptr::write(p, element);
329            }
330            self.set_len(len + 1);
331        }
332        Ok(())
333    }
334
335    /// Remove the last element in the vector and return it.
336    ///
337    /// Return `Some(` *element* `)` if the vector is non-empty, else `None`.
338    ///
339    /// ```
340    /// use arrayvec::ArrayVec;
341    ///
342    /// let mut array = ArrayVec::<_, 2>::new();
343    ///
344    /// array.push(1);
345    ///
346    /// assert_eq!(array.pop(), Some(1));
347    /// assert_eq!(array.pop(), None);
348    /// ```
349    pub fn pop(&mut self) -> Option<T> {
350        ArrayVecImpl::pop(self)
351    }
352
353    /// Remove the element at `index` and swap the last element into its place.
354    ///
355    /// This operation is O(1).
356    ///
357    /// Return the *element* if the index is in bounds, else panic.
358    ///
359    /// ***Panics*** if the `index` is out of bounds.
360    ///
361    /// ```
362    /// use arrayvec::ArrayVec;
363    ///
364    /// let mut array = ArrayVec::from([1, 2, 3]);
365    ///
366    /// assert_eq!(array.swap_remove(0), 1);
367    /// assert_eq!(&array[..], &[3, 2]);
368    ///
369    /// assert_eq!(array.swap_remove(1), 2);
370    /// assert_eq!(&array[..], &[3]);
371    /// ```
372    pub fn swap_remove(&mut self, index: usize) -> T {
373        self.swap_pop(index)
374            .unwrap_or_else(|| {
375                panic_oob!("swap_remove", index, self.len())
376            })
377    }
378
379    /// Remove the element at `index` and swap the last element into its place.
380    ///
381    /// This is a checked version of `.swap_remove`.  
382    /// This operation is O(1).
383    ///
384    /// Return `Some(` *element* `)` if the index is in bounds, else `None`.
385    ///
386    /// ```
387    /// use arrayvec::ArrayVec;
388    ///
389    /// let mut array = ArrayVec::from([1, 2, 3]);
390    ///
391    /// assert_eq!(array.swap_pop(0), Some(1));
392    /// assert_eq!(&array[..], &[3, 2]);
393    ///
394    /// assert_eq!(array.swap_pop(10), None);
395    /// ```
396    pub fn swap_pop(&mut self, index: usize) -> Option<T> {
397        let len = self.len();
398        if index >= len {
399            return None;
400        }
401        self.swap(index, len - 1);
402        self.pop()
403    }
404
405    /// Remove the element at `index` and shift down the following elements.
406    ///
407    /// The `index` must be strictly less than the length of the vector.
408    ///
409    /// ***Panics*** if the `index` is out of bounds.
410    ///
411    /// ```
412    /// use arrayvec::ArrayVec;
413    ///
414    /// let mut array = ArrayVec::from([1, 2, 3]);
415    ///
416    /// let removed_elt = array.remove(0);
417    /// assert_eq!(removed_elt, 1);
418    /// assert_eq!(&array[..], &[2, 3]);
419    /// ```
420    pub fn remove(&mut self, index: usize) -> T {
421        self.pop_at(index)
422            .unwrap_or_else(|| {
423                panic_oob!("remove", index, self.len())
424            })
425    }
426
427    /// Remove the element at `index` and shift down the following elements.
428    ///
429    /// This is a checked version of `.remove(index)`. Returns `None` if there
430    /// is no element at `index`. Otherwise, return the element inside `Some`.
431    ///
432    /// ```
433    /// use arrayvec::ArrayVec;
434    ///
435    /// let mut array = ArrayVec::from([1, 2, 3]);
436    ///
437    /// assert!(array.pop_at(0).is_some());
438    /// assert_eq!(&array[..], &[2, 3]);
439    ///
440    /// assert!(array.pop_at(2).is_none());
441    /// assert!(array.pop_at(10).is_none());
442    /// ```
443    pub fn pop_at(&mut self, index: usize) -> Option<T> {
444        if index >= self.len() {
445            None
446        } else {
447            self.drain(index..index + 1).next()
448        }
449    }
450
451    /// Retains only the elements specified by the predicate.
452    ///
453    /// In other words, remove all elements `e` such that `f(&mut e)` returns false.
454    /// This method operates in place and preserves the order of the retained
455    /// elements.
456    ///
457    /// ```
458    /// use arrayvec::ArrayVec;
459    ///
460    /// let mut array = ArrayVec::from([1, 2, 3, 4]);
461    /// array.retain(|x| *x & 1 != 0 );
462    /// assert_eq!(&array[..], &[1, 3]);
463    /// ```
464    pub fn retain<F>(&mut self, mut f: F)
465        where F: FnMut(&mut T) -> bool
466    {
467        // Check the implementation of
468        // https://doc.rust-lang.org/std/vec/struct.Vec.html#method.retain
469        // for safety arguments (especially regarding panics in f and when
470        // dropping elements). Implementation closely mirrored here.
471
472        let original_len = self.len();
473        unsafe { self.set_len(0) };
474
475        struct BackshiftOnDrop<'a, T, const CAP: usize> {
476            v: &'a mut ArrayVec<T, CAP>,
477            processed_len: usize,
478            deleted_cnt: usize,
479            original_len: usize,
480        }
481
482        impl<T, const CAP: usize> Drop for BackshiftOnDrop<'_, T, CAP> {
483            fn drop(&mut self) {
484                if self.deleted_cnt > 0 {
485                    unsafe {
486                        ptr::copy(
487                            self.v.as_ptr().add(self.processed_len),
488                            self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
489                            self.original_len - self.processed_len
490                        );
491                    }
492                }
493                unsafe {
494                    self.v.set_len(self.original_len - self.deleted_cnt);
495                }
496            }
497        }
498
499        let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
500
501        #[inline(always)]
502        fn process_one<F: FnMut(&mut T) -> bool, T, const CAP: usize, const DELETED: bool>(
503            f: &mut F,
504            g: &mut BackshiftOnDrop<'_, T, CAP>
505        ) -> bool {
506            let cur = unsafe { g.v.as_mut_ptr().add(g.processed_len) };
507            if !f(unsafe { &mut *cur }) {
508                g.processed_len += 1;
509                g.deleted_cnt += 1;
510                unsafe { ptr::drop_in_place(cur) };
511                return false;
512            }
513            if DELETED {
514                unsafe {
515                    let hole_slot = cur.sub(g.deleted_cnt);
516                    ptr::copy_nonoverlapping(cur, hole_slot, 1);
517                }
518            }
519            g.processed_len += 1;
520            true
521        }
522
523        // Stage 1: Nothing was deleted.
524        while g.processed_len != original_len {
525            if !process_one::<F, T, CAP, false>(&mut f, &mut g) {
526                break;
527            }
528        }
529
530        // Stage 2: Some elements were deleted.
531        while g.processed_len != original_len {
532            process_one::<F, T, CAP, true>(&mut f, &mut g);
533        }
534
535        drop(g);
536    }
537
538    /// Set the vector’s length without dropping or moving out elements
539    ///
540    /// This method is `unsafe` because it changes the notion of the
541    /// number of “valid” elements in the vector. Use with care.
542    ///
543    /// This method uses *debug assertions* to check that `length` is
544    /// not greater than the capacity.
545    pub unsafe fn set_len(&mut self, length: usize) {
546        // type invariant that capacity always fits in LenUint
547        debug_assert!(length <= self.capacity());
548        self.len = length as LenUint;
549    }
550
551    /// Copy all elements from the slice and append to the `ArrayVec`.
552    ///
553    /// ```
554    /// use arrayvec::ArrayVec;
555    ///
556    /// let mut vec: ArrayVec<usize, 10> = ArrayVec::new();
557    /// vec.push(1);
558    /// vec.try_extend_from_slice(&[2, 3]).unwrap();
559    /// assert_eq!(&vec[..], &[1, 2, 3]);
560    /// ```
561    ///
562    /// # Errors
563    ///
564    /// This method will return an error if the capacity left (see
565    /// [`remaining_capacity`]) is smaller then the length of the provided
566    /// slice.
567    ///
568    /// [`remaining_capacity`]: #method.remaining_capacity
569    pub fn try_extend_from_slice(&mut self, other: &[T]) -> Result<(), CapacityError>
570        where T: Copy,
571    {
572        if self.remaining_capacity() < other.len() {
573            return Err(CapacityError::new(()));
574        }
575
576        let self_len = self.len();
577        let other_len = other.len();
578
579        unsafe {
580            let dst = self.get_unchecked_ptr(self_len);
581            ptr::copy_nonoverlapping(other.as_ptr(), dst, other_len);
582            self.set_len(self_len + other_len);
583        }
584        Ok(())
585    }
586
587    /// Create a draining iterator that removes the specified range in the vector
588    /// and yields the removed items from start to end. The element range is
589    /// removed even if the iterator is not consumed until the end.
590    ///
591    /// Note: It is unspecified how many elements are removed from the vector,
592    /// if the `Drain` value is leaked.
593    ///
594    /// **Panics** if the starting point is greater than the end point or if
595    /// the end point is greater than the length of the vector.
596    ///
597    /// ```
598    /// use arrayvec::ArrayVec;
599    ///
600    /// let mut v1 = ArrayVec::from([1, 2, 3]);
601    /// let v2: ArrayVec<_, 3> = v1.drain(0..2).collect();
602    /// assert_eq!(&v1[..], &[3]);
603    /// assert_eq!(&v2[..], &[1, 2]);
604    /// ```
605    pub fn drain<R>(&mut self, range: R) -> Drain<T, CAP>
606        where R: RangeBounds<usize>
607    {
608        // Memory safety
609        //
610        // When the Drain is first created, it shortens the length of
611        // the source vector to make sure no uninitialized or moved-from elements
612        // are accessible at all if the Drain's destructor never gets to run.
613        //
614        // Drain will ptr::read out the values to remove.
615        // When finished, remaining tail of the vec is copied back to cover
616        // the hole, and the vector length is restored to the new length.
617        //
618        let len = self.len();
619        let start = match range.start_bound() {
620            Bound::Unbounded => 0,
621            Bound::Included(&i) => i,
622            Bound::Excluded(&i) => i.saturating_add(1),
623        };
624        let end = match range.end_bound() {
625            Bound::Excluded(&j) => j,
626            Bound::Included(&j) => j.saturating_add(1),
627            Bound::Unbounded => len,
628        };
629        self.drain_range(start, end)
630    }
631
632    fn drain_range(&mut self, start: usize, end: usize) -> Drain<T, CAP>
633    {
634        let len = self.len();
635
636        // bounds check happens here (before length is changed!)
637        let range_slice: *const _ = &self[start..end];
638
639        // Calling `set_len` creates a fresh and thus unique mutable references, making all
640        // older aliases we created invalid. So we cannot call that function.
641        self.len = start as LenUint;
642
643        unsafe {
644            Drain {
645                tail_start: end,
646                tail_len: len - end,
647                iter: (*range_slice).iter(),
648                vec: self as *mut _,
649            }
650        }
651    }
652
653    /// Return the inner fixed size array, if it is full to its capacity.
654    ///
655    /// Return an `Ok` value with the array if length equals capacity,
656    /// return an `Err` with self otherwise.
657    pub fn into_inner(self) -> Result<[T; CAP], Self> {
658        if self.len() < self.capacity() {
659            Err(self)
660        } else {
661            unsafe { Ok(self.into_inner_unchecked()) }
662        }
663    }
664
665    /// Return the inner fixed size array.
666    ///
667    /// Safety:
668    /// This operation is safe if and only if length equals capacity.
669    pub unsafe fn into_inner_unchecked(self) -> [T; CAP] {
670        debug_assert_eq!(self.len(), self.capacity());
671        let self_ = ManuallyDrop::new(self);
672        let array = ptr::read(self_.as_ptr() as *const [T; CAP]);
673        array
674    }
675
676    /// Returns the ArrayVec, replacing the original with a new empty ArrayVec.
677    ///
678    /// ```
679    /// use arrayvec::ArrayVec;
680    ///
681    /// let mut v = ArrayVec::from([0, 1, 2, 3]);
682    /// assert_eq!([0, 1, 2, 3], v.take().into_inner().unwrap());
683    /// assert!(v.is_empty());
684    /// ```
685    pub fn take(&mut self) -> Self  {
686        mem::replace(self, Self::new())
687    }
688
689    /// Return a slice containing all elements of the vector.
690    pub fn as_slice(&self) -> &[T] {
691        ArrayVecImpl::as_slice(self)
692    }
693
694    /// Return a mutable slice containing all elements of the vector.
695    pub fn as_mut_slice(&mut self) -> &mut [T] {
696        ArrayVecImpl::as_mut_slice(self)
697    }
698
699    /// Return a raw pointer to the vector's buffer.
700    pub fn as_ptr(&self) -> *const T {
701        ArrayVecImpl::as_ptr(self)
702    }
703
704    /// Return a raw mutable pointer to the vector's buffer.
705    pub fn as_mut_ptr(&mut self) -> *mut T {
706        ArrayVecImpl::as_mut_ptr(self)
707    }
708}
709
710impl<T, const CAP: usize> ArrayVecImpl for ArrayVec<T, CAP> {
711    type Item = T;
712    const CAPACITY: usize = CAP;
713
714    fn len(&self) -> usize { self.len() }
715
716    unsafe fn set_len(&mut self, length: usize) {
717        debug_assert!(length <= CAP);
718        self.len = length as LenUint;
719    }
720
721    fn as_ptr(&self) -> *const Self::Item {
722        self.xs.as_ptr() as _
723    }
724
725    fn as_mut_ptr(&mut self) -> *mut Self::Item {
726        self.xs.as_mut_ptr() as _
727    }
728}
729
730impl<T, const CAP: usize> Deref for ArrayVec<T, CAP> {
731    type Target = [T];
732    #[inline]
733    fn deref(&self) -> &Self::Target {
734        self.as_slice()
735    }
736}
737
738impl<T, const CAP: usize> DerefMut for ArrayVec<T, CAP> {
739    #[inline]
740    fn deref_mut(&mut self) -> &mut Self::Target {
741        self.as_mut_slice()
742    }
743}
744
745
746/// Create an `ArrayVec` from an array.
747///
748/// ```
749/// use arrayvec::ArrayVec;
750///
751/// let mut array = ArrayVec::from([1, 2, 3]);
752/// assert_eq!(array.len(), 3);
753/// assert_eq!(array.capacity(), 3);
754/// ```
755impl<T, const CAP: usize> From<[T; CAP]> for ArrayVec<T, CAP> {
756    #[track_caller]
757    fn from(array: [T; CAP]) -> Self {
758        let array = ManuallyDrop::new(array);
759        let mut vec = <ArrayVec<T, CAP>>::new();
760        unsafe {
761            (&*array as *const [T; CAP] as *const [MaybeUninit<T>; CAP])
762                .copy_to_nonoverlapping(&mut vec.xs as *mut [MaybeUninit<T>; CAP], 1);
763            vec.set_len(CAP);
764        }
765        vec
766    }
767}
768
769
770/// Try to create an `ArrayVec` from a slice. This will return an error if the slice was too big to
771/// fit.
772///
773/// ```
774/// use arrayvec::ArrayVec;
775/// use std::convert::TryInto as _;
776///
777/// let array: ArrayVec<_, 4> = (&[1, 2, 3] as &[_]).try_into().unwrap();
778/// assert_eq!(array.len(), 3);
779/// assert_eq!(array.capacity(), 4);
780/// ```
781impl<T, const CAP: usize> std::convert::TryFrom<&[T]> for ArrayVec<T, CAP>
782    where T: Clone,
783{
784    type Error = CapacityError;
785
786    fn try_from(slice: &[T]) -> Result<Self, Self::Error> {
787        if Self::CAPACITY < slice.len() {
788            Err(CapacityError::new(()))
789        } else {
790            let mut array = Self::new();
791            array.extend_from_slice(slice);
792            Ok(array)
793        }
794    }
795}
796
797
798/// Iterate the `ArrayVec` with references to each element.
799///
800/// ```
801/// use arrayvec::ArrayVec;
802///
803/// let array = ArrayVec::from([1, 2, 3]);
804///
805/// for elt in &array {
806///     // ...
807/// }
808/// ```
809impl<'a, T: 'a, const CAP: usize> IntoIterator for &'a ArrayVec<T, CAP> {
810    type Item = &'a T;
811    type IntoIter = slice::Iter<'a, T>;
812    fn into_iter(self) -> Self::IntoIter { self.iter() }
813}
814
815/// Iterate the `ArrayVec` with mutable references to each element.
816///
817/// ```
818/// use arrayvec::ArrayVec;
819///
820/// let mut array = ArrayVec::from([1, 2, 3]);
821///
822/// for elt in &mut array {
823///     // ...
824/// }
825/// ```
826impl<'a, T: 'a, const CAP: usize> IntoIterator for &'a mut ArrayVec<T, CAP> {
827    type Item = &'a mut T;
828    type IntoIter = slice::IterMut<'a, T>;
829    fn into_iter(self) -> Self::IntoIter { self.iter_mut() }
830}
831
832/// Iterate the `ArrayVec` with each element by value.
833///
834/// The vector is consumed by this operation.
835///
836/// ```
837/// use arrayvec::ArrayVec;
838///
839/// for elt in ArrayVec::from([1, 2, 3]) {
840///     // ...
841/// }
842/// ```
843impl<T, const CAP: usize> IntoIterator for ArrayVec<T, CAP> {
844    type Item = T;
845    type IntoIter = IntoIter<T, CAP>;
846    fn into_iter(self) -> IntoIter<T, CAP> {
847        IntoIter { index: 0, v: self, }
848    }
849}
850
851
852#[cfg(feature = "zeroize")]
853/// "Best efforts" zeroing of the `ArrayVec`'s buffer when the `zeroize` feature is enabled.
854///
855/// The length is set to 0, and the buffer is dropped and zeroized.
856/// Cannot ensure that previous moves of the `ArrayVec` did not leave values on the stack.
857///
858/// ```
859/// use arrayvec::ArrayVec;
860/// use zeroize::Zeroize;
861/// let mut array = ArrayVec::from([1, 2, 3]);
862/// array.zeroize();
863/// assert_eq!(array.len(), 0);
864/// let data = unsafe { core::slice::from_raw_parts(array.as_ptr(), array.capacity()) };
865/// assert_eq!(data, [0, 0, 0]);
866/// ```
867impl<Z: zeroize::Zeroize, const CAP: usize> zeroize::Zeroize for ArrayVec<Z, CAP> {
868    fn zeroize(&mut self) {
869        // Zeroize all the contained elements.
870        self.iter_mut().zeroize();
871        // Drop all the elements and set the length to 0.
872        self.clear();
873        // Zeroize the backing array.
874        self.xs.zeroize();
875    }
876}
877
878/// By-value iterator for `ArrayVec`.
879pub struct IntoIter<T, const CAP: usize> {
880    index: usize,
881    v: ArrayVec<T, CAP>,
882}
883impl<T, const CAP: usize> IntoIter<T, CAP> {
884    /// Returns the remaining items of this iterator as a slice.
885    pub fn as_slice(&self) -> &[T] {
886        &self.v[self.index..]
887    }
888
889    /// Returns the remaining items of this iterator as a mutable slice.
890    pub fn as_mut_slice(&mut self) -> &mut [T] {
891        &mut self.v[self.index..]
892    }
893}
894
895impl<T, const CAP: usize> Iterator for IntoIter<T, CAP> {
896    type Item = T;
897
898    fn next(&mut self) -> Option<Self::Item> {
899        if self.index == self.v.len() {
900            None
901        } else {
902            unsafe {
903                let index = self.index;
904                self.index = index + 1;
905                Some(ptr::read(self.v.get_unchecked_ptr(index)))
906            }
907        }
908    }
909
910    fn size_hint(&self) -> (usize, Option<usize>) {
911        let len = self.v.len() - self.index;
912        (len, Some(len))
913    }
914}
915
916impl<T, const CAP: usize> DoubleEndedIterator for IntoIter<T, CAP> {
917    fn next_back(&mut self) -> Option<Self::Item> {
918        if self.index == self.v.len() {
919            None
920        } else {
921            unsafe {
922                let new_len = self.v.len() - 1;
923                self.v.set_len(new_len);
924                Some(ptr::read(self.v.get_unchecked_ptr(new_len)))
925            }
926        }
927    }
928}
929
930impl<T, const CAP: usize> ExactSizeIterator for IntoIter<T, CAP> { }
931
932impl<T, const CAP: usize> Drop for IntoIter<T, CAP> {
933    fn drop(&mut self) {
934        // panic safety: Set length to 0 before dropping elements.
935        let index = self.index;
936        let len = self.v.len();
937        unsafe {
938            self.v.set_len(0);
939            let elements = slice::from_raw_parts_mut(
940                self.v.get_unchecked_ptr(index),
941                len - index);
942            ptr::drop_in_place(elements);
943        }
944    }
945}
946
947impl<T, const CAP: usize> Clone for IntoIter<T, CAP>
948where T: Clone,
949{
950    fn clone(&self) -> IntoIter<T, CAP> {
951        let mut v = ArrayVec::new();
952        v.extend_from_slice(&self.v[self.index..]);
953        v.into_iter()
954    }
955}
956
957impl<T, const CAP: usize> fmt::Debug for IntoIter<T, CAP>
958where
959    T: fmt::Debug,
960{
961    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
962        f.debug_list()
963            .entries(&self.v[self.index..])
964            .finish()
965    }
966}
967
968/// A draining iterator for `ArrayVec`.
969pub struct Drain<'a, T: 'a, const CAP: usize> {
970    /// Index of tail to preserve
971    tail_start: usize,
972    /// Length of tail
973    tail_len: usize,
974    /// Current remaining range to remove
975    iter: slice::Iter<'a, T>,
976    vec: *mut ArrayVec<T, CAP>,
977}
978
979unsafe impl<'a, T: Sync, const CAP: usize> Sync for Drain<'a, T, CAP> {}
980unsafe impl<'a, T: Send, const CAP: usize> Send for Drain<'a, T, CAP> {}
981
982impl<'a, T: 'a, const CAP: usize> Iterator for Drain<'a, T, CAP> {
983    type Item = T;
984
985    fn next(&mut self) -> Option<Self::Item> {
986        self.iter.next().map(|elt|
987            unsafe {
988                ptr::read(elt as *const _)
989            }
990        )
991    }
992
993    fn size_hint(&self) -> (usize, Option<usize>) {
994        self.iter.size_hint()
995    }
996}
997
998impl<'a, T: 'a, const CAP: usize> DoubleEndedIterator for Drain<'a, T, CAP>
999{
1000    fn next_back(&mut self) -> Option<Self::Item> {
1001        self.iter.next_back().map(|elt|
1002            unsafe {
1003                ptr::read(elt as *const _)
1004            }
1005        )
1006    }
1007}
1008
1009impl<'a, T: 'a, const CAP: usize> ExactSizeIterator for Drain<'a, T, CAP> {}
1010
1011impl<'a, T: 'a, const CAP: usize> Drop for Drain<'a, T, CAP> {
1012    fn drop(&mut self) {
1013        // len is currently 0 so panicking while dropping will not cause a double drop.
1014
1015        // exhaust self first
1016        while let Some(_) = self.next() { }
1017
1018        if self.tail_len > 0 {
1019            unsafe {
1020                let source_vec = &mut *self.vec;
1021                // memmove back untouched tail, update to new length
1022                let start = source_vec.len();
1023                let tail = self.tail_start;
1024                let ptr = source_vec.as_mut_ptr();
1025                ptr::copy(ptr.add(tail), ptr.add(start), self.tail_len);
1026                source_vec.set_len(start + self.tail_len);
1027            }
1028        }
1029    }
1030}
1031
1032struct ScopeExitGuard<T, Data, F>
1033    where F: FnMut(&Data, &mut T)
1034{
1035    value: T,
1036    data: Data,
1037    f: F,
1038}
1039
1040impl<T, Data, F> Drop for ScopeExitGuard<T, Data, F>
1041    where F: FnMut(&Data, &mut T)
1042{
1043    fn drop(&mut self) {
1044        (self.f)(&self.data, &mut self.value)
1045    }
1046}
1047
1048
1049
1050/// Extend the `ArrayVec` with an iterator.
1051/// 
1052/// ***Panics*** if extending the vector exceeds its capacity.
1053impl<T, const CAP: usize> Extend<T> for ArrayVec<T, CAP> {
1054    /// Extend the `ArrayVec` with an iterator.
1055    /// 
1056    /// ***Panics*** if extending the vector exceeds its capacity.
1057    #[track_caller]
1058    fn extend<I: IntoIterator<Item=T>>(&mut self, iter: I) {
1059        unsafe {
1060            self.extend_from_iter::<_, true>(iter)
1061        }
1062    }
1063}
1064
1065#[inline(never)]
1066#[cold]
1067#[track_caller]
1068fn extend_panic() {
1069    panic!("ArrayVec: capacity exceeded in extend/from_iter");
1070}
1071
1072impl<T, const CAP: usize> ArrayVec<T, CAP> {
1073    /// Extend the arrayvec from the iterable.
1074    ///
1075    /// ## Safety
1076    ///
1077    /// Unsafe because if CHECK is false, the length of the input is not checked.
1078    /// The caller must ensure the length of the input fits in the capacity.
1079    #[track_caller]
1080    pub(crate) unsafe fn extend_from_iter<I, const CHECK: bool>(&mut self, iterable: I)
1081        where I: IntoIterator<Item = T>
1082    {
1083        let take = self.capacity() - self.len();
1084        let len = self.len();
1085        let mut ptr = raw_ptr_add(self.as_mut_ptr(), len);
1086        let end_ptr = raw_ptr_add(ptr, take);
1087        // Keep the length in a separate variable, write it back on scope
1088        // exit. To help the compiler with alias analysis and stuff.
1089        // We update the length to handle panic in the iteration of the
1090        // user's iterator, without dropping any elements on the floor.
1091        let mut guard = ScopeExitGuard {
1092            value: &mut self.len,
1093            data: len,
1094            f: move |&len, self_len| {
1095                **self_len = len as LenUint;
1096            }
1097        };
1098        let mut iter = iterable.into_iter();
1099        loop {
1100            if let Some(elt) = iter.next() {
1101                if ptr == end_ptr && CHECK { extend_panic(); }
1102                debug_assert_ne!(ptr, end_ptr);
1103                if mem::size_of::<T>() != 0 {
1104                    ptr.write(elt);
1105                }
1106                ptr = raw_ptr_add(ptr, 1);
1107                guard.data += 1;
1108            } else {
1109                return; // success
1110            }
1111        }
1112    }
1113
1114    /// Extend the ArrayVec with clones of elements from the slice;
1115    /// the length of the slice must be <= the remaining capacity in the arrayvec.
1116    pub(crate) fn extend_from_slice(&mut self, slice: &[T])
1117        where T: Clone
1118    {
1119        let take = self.capacity() - self.len();
1120        debug_assert!(slice.len() <= take);
1121        unsafe {
1122            let slice = if take < slice.len() { &slice[..take] } else { slice };
1123            self.extend_from_iter::<_, false>(slice.iter().cloned());
1124        }
1125    }
1126}
1127
1128/// Rawptr add but uses arithmetic distance for ZST
1129unsafe fn raw_ptr_add<T>(ptr: *mut T, offset: usize) -> *mut T {
1130    if mem::size_of::<T>() == 0 {
1131        // Special case for ZST
1132        ptr.cast::<u8>().wrapping_add(offset).cast::<T>()
1133    } else {
1134        ptr.add(offset)
1135    }
1136}
1137
1138/// Create an `ArrayVec` from an iterator.
1139/// 
1140/// ***Panics*** if the number of elements in the iterator exceeds the arrayvec's capacity.
1141impl<T, const CAP: usize> iter::FromIterator<T> for ArrayVec<T, CAP> {
1142    /// Create an `ArrayVec` from an iterator.
1143    /// 
1144    /// ***Panics*** if the number of elements in the iterator exceeds the arrayvec's capacity.
1145    fn from_iter<I: IntoIterator<Item=T>>(iter: I) -> Self {
1146        let mut array = ArrayVec::new();
1147        array.extend(iter);
1148        array
1149    }
1150}
1151
1152impl<T, const CAP: usize> Clone for ArrayVec<T, CAP>
1153    where T: Clone
1154{
1155    fn clone(&self) -> Self {
1156        self.iter().cloned().collect()
1157    }
1158
1159    fn clone_from(&mut self, rhs: &Self) {
1160        // recursive case for the common prefix
1161        let prefix = cmp::min(self.len(), rhs.len());
1162        self[..prefix].clone_from_slice(&rhs[..prefix]);
1163
1164        if prefix < self.len() {
1165            // rhs was shorter
1166            self.truncate(prefix);
1167        } else {
1168            let rhs_elems = &rhs[self.len()..];
1169            self.extend_from_slice(rhs_elems);
1170        }
1171    }
1172}
1173
1174impl<T, const CAP: usize> Hash for ArrayVec<T, CAP>
1175    where T: Hash
1176{
1177    fn hash<H: Hasher>(&self, state: &mut H) {
1178        Hash::hash(&**self, state)
1179    }
1180}
1181
1182impl<T, const CAP: usize> PartialEq for ArrayVec<T, CAP>
1183    where T: PartialEq
1184{
1185    fn eq(&self, other: &Self) -> bool {
1186        **self == **other
1187    }
1188}
1189
1190impl<T, const CAP: usize> PartialEq<[T]> for ArrayVec<T, CAP>
1191    where T: PartialEq
1192{
1193    fn eq(&self, other: &[T]) -> bool {
1194        **self == *other
1195    }
1196}
1197
1198impl<T, const CAP: usize> Eq for ArrayVec<T, CAP> where T: Eq { }
1199
1200impl<T, const CAP: usize> Borrow<[T]> for ArrayVec<T, CAP> {
1201    fn borrow(&self) -> &[T] { self }
1202}
1203
1204impl<T, const CAP: usize> BorrowMut<[T]> for ArrayVec<T, CAP> {
1205    fn borrow_mut(&mut self) -> &mut [T] { self }
1206}
1207
1208impl<T, const CAP: usize> AsRef<[T]> for ArrayVec<T, CAP> {
1209    fn as_ref(&self) -> &[T] { self }
1210}
1211
1212impl<T, const CAP: usize> AsMut<[T]> for ArrayVec<T, CAP> {
1213    fn as_mut(&mut self) -> &mut [T] { self }
1214}
1215
1216impl<T, const CAP: usize> fmt::Debug for ArrayVec<T, CAP> where T: fmt::Debug {
1217    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { (**self).fmt(f) }
1218}
1219
1220impl<T, const CAP: usize> Default for ArrayVec<T, CAP> {
1221    /// Return an empty array
1222    fn default() -> ArrayVec<T, CAP> {
1223        ArrayVec::new()
1224    }
1225}
1226
1227impl<T, const CAP: usize> PartialOrd for ArrayVec<T, CAP> where T: PartialOrd {
1228    fn partial_cmp(&self, other: &Self) -> Option<cmp::Ordering> {
1229        (**self).partial_cmp(other)
1230    }
1231
1232    fn lt(&self, other: &Self) -> bool {
1233        (**self).lt(other)
1234    }
1235
1236    fn le(&self, other: &Self) -> bool {
1237        (**self).le(other)
1238    }
1239
1240    fn ge(&self, other: &Self) -> bool {
1241        (**self).ge(other)
1242    }
1243
1244    fn gt(&self, other: &Self) -> bool {
1245        (**self).gt(other)
1246    }
1247}
1248
1249impl<T, const CAP: usize> Ord for ArrayVec<T, CAP> where T: Ord {
1250    fn cmp(&self, other: &Self) -> cmp::Ordering {
1251        (**self).cmp(other)
1252    }
1253}
1254
1255#[cfg(feature="std")]
1256/// `Write` appends written data to the end of the vector.
1257///
1258/// Requires `features="std"`.
1259impl<const CAP: usize> io::Write for ArrayVec<u8, CAP> {
1260    fn write(&mut self, data: &[u8]) -> io::Result<usize> {
1261        let len = cmp::min(self.remaining_capacity(), data.len());
1262        let _result = self.try_extend_from_slice(&data[..len]);
1263        debug_assert!(_result.is_ok());
1264        Ok(len)
1265    }
1266    fn flush(&mut self) -> io::Result<()> { Ok(()) }
1267}
1268
1269#[cfg(feature="serde")]
1270/// Requires crate feature `"serde"`
1271impl<T: Serialize, const CAP: usize> Serialize for ArrayVec<T, CAP> {
1272    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
1273        where S: Serializer
1274    {
1275        serializer.collect_seq(self)
1276    }
1277}
1278
1279#[cfg(feature="serde")]
1280/// Requires crate feature `"serde"`
1281impl<'de, T: Deserialize<'de>, const CAP: usize> Deserialize<'de> for ArrayVec<T, CAP> {
1282    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
1283        where D: Deserializer<'de>
1284    {
1285        use serde::de::{Visitor, SeqAccess, Error};
1286        use std::marker::PhantomData;
1287
1288        struct ArrayVecVisitor<'de, T: Deserialize<'de>, const CAP: usize>(PhantomData<(&'de (), [T; CAP])>);
1289
1290        impl<'de, T: Deserialize<'de>, const CAP: usize> Visitor<'de> for ArrayVecVisitor<'de, T, CAP> {
1291            type Value = ArrayVec<T, CAP>;
1292
1293            fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
1294                write!(formatter, "an array with no more than {} items", CAP)
1295            }
1296
1297            fn visit_seq<SA>(self, mut seq: SA) -> Result<Self::Value, SA::Error>
1298                where SA: SeqAccess<'de>,
1299            {
1300                let mut values = ArrayVec::<T, CAP>::new();
1301
1302                while let Some(value) = seq.next_element()? {
1303                    if let Err(_) = values.try_push(value) {
1304                        return Err(SA::Error::invalid_length(CAP + 1, &self));
1305                    }
1306                }
1307
1308                Ok(values)
1309            }
1310        }
1311
1312        deserializer.deserialize_seq(ArrayVecVisitor::<T, CAP>(PhantomData))
1313    }
1314}
1315
1316#[cfg(feature = "borsh")]
1317/// Requires crate feature `"borsh"`
1318impl<T, const CAP: usize> borsh::BorshSerialize for ArrayVec<T, CAP>
1319where
1320    T: borsh::BorshSerialize,
1321{
1322    fn serialize<W: borsh::io::Write>(&self, writer: &mut W) -> borsh::io::Result<()> {
1323        <[T] as borsh::BorshSerialize>::serialize(self.as_slice(), writer)
1324    }
1325}
1326
1327#[cfg(feature = "borsh")]
1328/// Requires crate feature `"borsh"`
1329impl<T, const CAP: usize> borsh::BorshDeserialize for ArrayVec<T, CAP>
1330where
1331    T: borsh::BorshDeserialize,
1332{
1333    fn deserialize_reader<R: borsh::io::Read>(reader: &mut R) -> borsh::io::Result<Self> {
1334        let mut values = Self::new();
1335        let len = <u32 as borsh::BorshDeserialize>::deserialize_reader(reader)?;
1336        for _ in 0..len {
1337            let elem = <T as borsh::BorshDeserialize>::deserialize_reader(reader)?;
1338            if let Err(_) = values.try_push(elem) {
1339                return Err(borsh::io::Error::new(
1340                    borsh::io::ErrorKind::InvalidData,
1341                    format!("Expected an array with no more than {} items", CAP),
1342                ));
1343            }
1344        }
1345
1346        Ok(values)
1347    }
1348}