libm/math/tan.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
// origin: FreeBSD /usr/src/lib/msun/src/s_tan.c */
//
// ====================================================
// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
//
// Developed at SunPro, a Sun Microsystems, Inc. business.
// Permission to use, copy, modify, and distribute this
// software is freely granted, provided that this notice
// is preserved.
// ====================================================
use super::{k_tan, rem_pio2};
// tan(x)
// Return tangent function of x.
//
// kernel function:
// k_tan ... tangent function on [-pi/4,pi/4]
// rem_pio2 ... argument reduction routine
//
// Method.
// Let S,C and T denote the sin, cos and tan respectively on
// [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2
// in [-pi/4 , +pi/4], and let n = k mod 4.
// We have
//
// n sin(x) cos(x) tan(x)
// ----------------------------------------------------------
// 0 S C T
// 1 C -S -1/T
// 2 -S -C T
// 3 -C S -1/T
// ----------------------------------------------------------
//
// Special cases:
// Let trig be any of sin, cos, or tan.
// trig(+-INF) is NaN, with signals;
// trig(NaN) is that NaN;
//
// Accuracy:
// TRIG(x) returns trig(x) nearly rounded
/// The tangent of `x` (f64).
///
/// `x` is specified in radians.
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn tan(x: f64) -> f64 {
let x1p120 = f32::from_bits(0x7b800000); // 0x1p120f === 2 ^ 120
let ix = (f64::to_bits(x) >> 32) as u32 & 0x7fffffff;
/* |x| ~< pi/4 */
if ix <= 0x3fe921fb {
if ix < 0x3e400000 {
/* |x| < 2**-27 */
/* raise inexact if x!=0 and underflow if subnormal */
force_eval!(if ix < 0x00100000 { x / x1p120 as f64 } else { x + x1p120 as f64 });
return x;
}
return k_tan(x, 0.0, 0);
}
/* tan(Inf or NaN) is NaN */
if ix >= 0x7ff00000 {
return x - x;
}
/* argument reduction */
let (n, y0, y1) = rem_pio2(x);
k_tan(y0, y1, n & 1)
}