rand_distr/
gamma.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The Gamma and derived distributions.

// We use the variable names from the published reference, therefore this
// warning is not helpful.
#![allow(clippy::many_single_char_names)]

use self::ChiSquaredRepr::*;
use self::GammaRepr::*;

use crate::normal::StandardNormal;
use num_traits::Float;
use crate::{Distribution, Exp, Exp1, Open01};
use rand::Rng;
use core::fmt;
#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};

/// The Gamma distribution `Gamma(shape, scale)` distribution.
///
/// The density function of this distribution is
///
/// ```text
/// f(x) =  x^(k - 1) * exp(-x / θ) / (Γ(k) * θ^k)
/// ```
///
/// where `Γ` is the Gamma function, `k` is the shape and `θ` is the
/// scale and both `k` and `θ` are strictly positive.
///
/// The algorithm used is that described by Marsaglia & Tsang 2000[^1],
/// falling back to directly sampling from an Exponential for `shape
/// == 1`, and using the boosting technique described in that paper for
/// `shape < 1`.
///
/// # Example
///
/// ```
/// use rand_distr::{Distribution, Gamma};
///
/// let gamma = Gamma::new(2.0, 5.0).unwrap();
/// let v = gamma.sample(&mut rand::thread_rng());
/// println!("{} is from a Gamma(2, 5) distribution", v);
/// ```
///
/// [^1]: George Marsaglia and Wai Wan Tsang. 2000. "A Simple Method for
///       Generating Gamma Variables" *ACM Trans. Math. Softw.* 26, 3
///       (September 2000), 363-372.
///       DOI:[10.1145/358407.358414](https://doi.acm.org/10.1145/358407.358414)
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Gamma<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    repr: GammaRepr<F>,
}

/// Error type returned from `Gamma::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
    /// `shape <= 0` or `nan`.
    ShapeTooSmall,
    /// `scale <= 0` or `nan`.
    ScaleTooSmall,
    /// `1 / scale == 0`.
    ScaleTooLarge,
}

impl fmt::Display for Error {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            Error::ShapeTooSmall => "shape is not positive in gamma distribution",
            Error::ScaleTooSmall => "scale is not positive in gamma distribution",
            Error::ScaleTooLarge => "scale is infinity in gamma distribution",
        })
    }
}

#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for Error {}

#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
enum GammaRepr<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    Large(GammaLargeShape<F>),
    One(Exp<F>),
    Small(GammaSmallShape<F>),
}

// These two helpers could be made public, but saving the
// match-on-Gamma-enum branch from using them directly (e.g. if one
// knows that the shape is always > 1) doesn't appear to be much
// faster.

/// Gamma distribution where the shape parameter is less than 1.
///
/// Note, samples from this require a compulsory floating-point `pow`
/// call, which makes it significantly slower than sampling from a
/// gamma distribution where the shape parameter is greater than or
/// equal to 1.
///
/// See `Gamma` for sampling from a Gamma distribution with general
/// shape parameters.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
struct GammaSmallShape<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Open01: Distribution<F>,
{
    inv_shape: F,
    large_shape: GammaLargeShape<F>,
}

/// Gamma distribution where the shape parameter is larger than 1.
///
/// See `Gamma` for sampling from a Gamma distribution with general
/// shape parameters.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
struct GammaLargeShape<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Open01: Distribution<F>,
{
    scale: F,
    c: F,
    d: F,
}

impl<F> Gamma<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    /// Construct an object representing the `Gamma(shape, scale)`
    /// distribution.
    #[inline]
    pub fn new(shape: F, scale: F) -> Result<Gamma<F>, Error> {
        if !(shape > F::zero()) {
            return Err(Error::ShapeTooSmall);
        }
        if !(scale > F::zero()) {
            return Err(Error::ScaleTooSmall);
        }

        let repr = if shape == F::one() {
            One(Exp::new(F::one() / scale).map_err(|_| Error::ScaleTooLarge)?)
        } else if shape < F::one() {
            Small(GammaSmallShape::new_raw(shape, scale))
        } else {
            Large(GammaLargeShape::new_raw(shape, scale))
        };
        Ok(Gamma { repr })
    }
}

impl<F> GammaSmallShape<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Open01: Distribution<F>,
{
    fn new_raw(shape: F, scale: F) -> GammaSmallShape<F> {
        GammaSmallShape {
            inv_shape: F::one() / shape,
            large_shape: GammaLargeShape::new_raw(shape + F::one(), scale),
        }
    }
}

impl<F> GammaLargeShape<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Open01: Distribution<F>,
{
    fn new_raw(shape: F, scale: F) -> GammaLargeShape<F> {
        let d = shape - F::from(1. / 3.).unwrap();
        GammaLargeShape {
            scale,
            c: F::one() / (F::from(9.).unwrap() * d).sqrt(),
            d,
        }
    }
}

impl<F> Distribution<F> for Gamma<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
        match self.repr {
            Small(ref g) => g.sample(rng),
            One(ref g) => g.sample(rng),
            Large(ref g) => g.sample(rng),
        }
    }
}
impl<F> Distribution<F> for GammaSmallShape<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Open01: Distribution<F>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
        let u: F = rng.sample(Open01);

        self.large_shape.sample(rng) * u.powf(self.inv_shape)
    }
}
impl<F> Distribution<F> for GammaLargeShape<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Open01: Distribution<F>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
        // Marsaglia & Tsang method, 2000
        loop {
            let x: F = rng.sample(StandardNormal);
            let v_cbrt = F::one() + self.c * x;
            if v_cbrt <= F::zero() {
                // a^3 <= 0 iff a <= 0
                continue;
            }

            let v = v_cbrt * v_cbrt * v_cbrt;
            let u: F = rng.sample(Open01);

            let x_sqr = x * x;
            if u < F::one() - F::from(0.0331).unwrap() * x_sqr * x_sqr
                || u.ln() < F::from(0.5).unwrap() * x_sqr + self.d * (F::one() - v + v.ln())
            {
                return self.d * v * self.scale;
            }
        }
    }
}

/// The chi-squared distribution `χ²(k)`, where `k` is the degrees of
/// freedom.
///
/// For `k > 0` integral, this distribution is the sum of the squares
/// of `k` independent standard normal random variables. For other
/// `k`, this uses the equivalent characterisation
/// `χ²(k) = Gamma(k/2, 2)`.
///
/// # Example
///
/// ```
/// use rand_distr::{ChiSquared, Distribution};
///
/// let chi = ChiSquared::new(11.0).unwrap();
/// let v = chi.sample(&mut rand::thread_rng());
/// println!("{} is from a χ²(11) distribution", v)
/// ```
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct ChiSquared<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    repr: ChiSquaredRepr<F>,
}

/// Error type returned from `ChiSquared::new` and `StudentT::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum ChiSquaredError {
    /// `0.5 * k <= 0` or `nan`.
    DoFTooSmall,
}

impl fmt::Display for ChiSquaredError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            ChiSquaredError::DoFTooSmall => {
                "degrees-of-freedom k is not positive in chi-squared distribution"
            }
        })
    }
}

#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for ChiSquaredError {}

#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
enum ChiSquaredRepr<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    // k == 1, Gamma(alpha, ..) is particularly slow for alpha < 1,
    // e.g. when alpha = 1/2 as it would be for this case, so special-
    // casing and using the definition of N(0,1)^2 is faster.
    DoFExactlyOne,
    DoFAnythingElse(Gamma<F>),
}

impl<F> ChiSquared<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    /// Create a new chi-squared distribution with degrees-of-freedom
    /// `k`.
    pub fn new(k: F) -> Result<ChiSquared<F>, ChiSquaredError> {
        let repr = if k == F::one() {
            DoFExactlyOne
        } else {
            if !(F::from(0.5).unwrap() * k > F::zero()) {
                return Err(ChiSquaredError::DoFTooSmall);
            }
            DoFAnythingElse(Gamma::new(F::from(0.5).unwrap() * k, F::from(2.0).unwrap()).unwrap())
        };
        Ok(ChiSquared { repr })
    }
}
impl<F> Distribution<F> for ChiSquared<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
        match self.repr {
            DoFExactlyOne => {
                // k == 1 => N(0,1)^2
                let norm: F = rng.sample(StandardNormal);
                norm * norm
            }
            DoFAnythingElse(ref g) => g.sample(rng),
        }
    }
}

/// The Fisher F distribution `F(m, n)`.
///
/// This distribution is equivalent to the ratio of two normalised
/// chi-squared distributions, that is, `F(m,n) = (χ²(m)/m) /
/// (χ²(n)/n)`.
///
/// # Example
///
/// ```
/// use rand_distr::{FisherF, Distribution};
///
/// let f = FisherF::new(2.0, 32.0).unwrap();
/// let v = f.sample(&mut rand::thread_rng());
/// println!("{} is from an F(2, 32) distribution", v)
/// ```
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct FisherF<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    numer: ChiSquared<F>,
    denom: ChiSquared<F>,
    // denom_dof / numer_dof so that this can just be a straight
    // multiplication, rather than a division.
    dof_ratio: F,
}

/// Error type returned from `FisherF::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum FisherFError {
    /// `m <= 0` or `nan`.
    MTooSmall,
    /// `n <= 0` or `nan`.
    NTooSmall,
}

impl fmt::Display for FisherFError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            FisherFError::MTooSmall => "m is not positive in Fisher F distribution",
            FisherFError::NTooSmall => "n is not positive in Fisher F distribution",
        })
    }
}

#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for FisherFError {}

impl<F> FisherF<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    /// Create a new `FisherF` distribution, with the given parameter.
    pub fn new(m: F, n: F) -> Result<FisherF<F>, FisherFError> {
        let zero = F::zero();
        if !(m > zero) {
            return Err(FisherFError::MTooSmall);
        }
        if !(n > zero) {
            return Err(FisherFError::NTooSmall);
        }

        Ok(FisherF {
            numer: ChiSquared::new(m).unwrap(),
            denom: ChiSquared::new(n).unwrap(),
            dof_ratio: n / m,
        })
    }
}
impl<F> Distribution<F> for FisherF<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
        self.numer.sample(rng) / self.denom.sample(rng) * self.dof_ratio
    }
}

/// The Student t distribution, `t(nu)`, where `nu` is the degrees of
/// freedom.
///
/// # Example
///
/// ```
/// use rand_distr::{StudentT, Distribution};
///
/// let t = StudentT::new(11.0).unwrap();
/// let v = t.sample(&mut rand::thread_rng());
/// println!("{} is from a t(11) distribution", v)
/// ```
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct StudentT<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    chi: ChiSquared<F>,
    dof: F,
}

impl<F> StudentT<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    /// Create a new Student t distribution with `n` degrees of
    /// freedom.
    pub fn new(n: F) -> Result<StudentT<F>, ChiSquaredError> {
        Ok(StudentT {
            chi: ChiSquared::new(n)?,
            dof: n,
        })
    }
}
impl<F> Distribution<F> for StudentT<F>
where
    F: Float,
    StandardNormal: Distribution<F>,
    Exp1: Distribution<F>,
    Open01: Distribution<F>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
        let norm: F = rng.sample(StandardNormal);
        norm * (self.dof / self.chi.sample(rng)).sqrt()
    }
}

/// The algorithm used for sampling the Beta distribution.
///
/// Reference:
///
/// R. C. H. Cheng (1978).
/// Generating beta variates with nonintegral shape parameters.
/// Communications of the ACM 21, 317-322.
/// https://doi.org/10.1145/359460.359482
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
enum BetaAlgorithm<N> {
    BB(BB<N>),
    BC(BC<N>),
}

/// Algorithm BB for `min(alpha, beta) > 1`.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
struct BB<N> {
    alpha: N,
    beta: N,
    gamma: N,
}

/// Algorithm BC for `min(alpha, beta) <= 1`.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
struct BC<N> {
    alpha: N,
    beta: N,
    delta: N,
    kappa1: N,
    kappa2: N,
}

/// The Beta distribution with shape parameters `alpha` and `beta`.
///
/// # Example
///
/// ```
/// use rand_distr::{Distribution, Beta};
///
/// let beta = Beta::new(2.0, 5.0).unwrap();
/// let v = beta.sample(&mut rand::thread_rng());
/// println!("{} is from a Beta(2, 5) distribution", v);
/// ```
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Beta<F>
where
    F: Float,
    Open01: Distribution<F>,
{
    a: F, b: F, switched_params: bool,
    algorithm: BetaAlgorithm<F>,
}

/// Error type returned from `Beta::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum BetaError {
    /// `alpha <= 0` or `nan`.
    AlphaTooSmall,
    /// `beta <= 0` or `nan`.
    BetaTooSmall,
}

impl fmt::Display for BetaError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.write_str(match self {
            BetaError::AlphaTooSmall => "alpha is not positive in beta distribution",
            BetaError::BetaTooSmall => "beta is not positive in beta distribution",
        })
    }
}

#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for BetaError {}

impl<F> Beta<F>
where
    F: Float,
    Open01: Distribution<F>,
{
    /// Construct an object representing the `Beta(alpha, beta)`
    /// distribution.
    pub fn new(alpha: F, beta: F) -> Result<Beta<F>, BetaError> {
        if !(alpha > F::zero()) {
            return Err(BetaError::AlphaTooSmall);
        }
        if !(beta > F::zero()) {
            return Err(BetaError::BetaTooSmall);
        }
        // From now on, we use the notation from the reference,
        // i.e. `alpha` and `beta` are renamed to `a0` and `b0`.
        let (a0, b0) = (alpha, beta);
        let (a, b, switched_params) = if a0 < b0 {
            (a0, b0, false)
        } else {
            (b0, a0, true)
        };
        if a > F::one() {
            // Algorithm BB
            let alpha = a + b;
            let beta = ((alpha - F::from(2.).unwrap())
                        / (F::from(2.).unwrap()*a*b - alpha)).sqrt();
            let gamma = a + F::one() / beta;

            Ok(Beta {
                a, b, switched_params,
                algorithm: BetaAlgorithm::BB(BB {
                    alpha, beta, gamma,
                })
            })
        } else {
            // Algorithm BC
            //
            // Here `a` is the maximum instead of the minimum.
            let (a, b, switched_params) = (b, a, !switched_params);
            let alpha = a + b;
            let beta = F::one() / b;
            let delta = F::one() + a - b;
            let kappa1 = delta
                * (F::from(1. / 18. / 4.).unwrap() + F::from(3. / 18. / 4.).unwrap()*b)
                / (a*beta - F::from(14. / 18.).unwrap());
            let kappa2 = F::from(0.25).unwrap()
                + (F::from(0.5).unwrap() + F::from(0.25).unwrap()/delta)*b;

            Ok(Beta {
                a, b, switched_params,
                algorithm: BetaAlgorithm::BC(BC {
                    alpha, beta, delta, kappa1, kappa2,
                })
            })
        }
    }
}

impl<F> Distribution<F> for Beta<F>
where
    F: Float,
    Open01: Distribution<F>,
{
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
        let mut w;
        match self.algorithm {
            BetaAlgorithm::BB(algo) => {
                loop {
                    // 1.
                    let u1 = rng.sample(Open01);
                    let u2 = rng.sample(Open01);
                    let v = algo.beta * (u1 / (F::one() - u1)).ln();
                    w = self.a * v.exp();
                    let z = u1*u1 * u2;
                    let r = algo.gamma * v - F::from(4.).unwrap().ln();
                    let s = self.a + r - w;
                    // 2.
                    if s + F::one() + F::from(5.).unwrap().ln()
                        >= F::from(5.).unwrap() * z {
                        break;
                    }
                    // 3.
                    let t = z.ln();
                    if s >= t {
                        break;
                    }
                    // 4.
                    if !(r + algo.alpha * (algo.alpha / (self.b + w)).ln() < t) {
                        break;
                    }
                }
            },
            BetaAlgorithm::BC(algo) => {
                loop {
                    let z;
                    // 1.
                    let u1 = rng.sample(Open01);
                    let u2 = rng.sample(Open01);
                    if u1 < F::from(0.5).unwrap() {
                        // 2.
                        let y = u1 * u2;
                        z = u1 * y;
                        if F::from(0.25).unwrap() * u2 + z - y >= algo.kappa1 {
                            continue;
                        }
                    } else {
                        // 3.
                        z = u1 * u1 * u2;
                        if z <= F::from(0.25).unwrap() {
                            let v = algo.beta * (u1 / (F::one() - u1)).ln();
                            w = self.a * v.exp();
                            break;
                        }
                        // 4.
                        if z >= algo.kappa2 {
                            continue;
                        }
                    }
                    // 5.
                    let v = algo.beta * (u1 / (F::one() - u1)).ln();
                    w = self.a * v.exp();
                    if !(algo.alpha * ((algo.alpha / (self.b + w)).ln() + v)
                         - F::from(4.).unwrap().ln() < z.ln()) {
                        break;
                    };
                }
            },
        };
        // 5. for BB, 6. for BC
        if !self.switched_params {
            if w == F::infinity() {
                // Assuming `b` is finite, for large `w`:
                return F::one();
            }
            w / (self.b + w)
        } else {
            self.b / (self.b + w)
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    #[test]
    fn test_chi_squared_one() {
        let chi = ChiSquared::new(1.0).unwrap();
        let mut rng = crate::test::rng(201);
        for _ in 0..1000 {
            chi.sample(&mut rng);
        }
    }
    #[test]
    fn test_chi_squared_small() {
        let chi = ChiSquared::new(0.5).unwrap();
        let mut rng = crate::test::rng(202);
        for _ in 0..1000 {
            chi.sample(&mut rng);
        }
    }
    #[test]
    fn test_chi_squared_large() {
        let chi = ChiSquared::new(30.0).unwrap();
        let mut rng = crate::test::rng(203);
        for _ in 0..1000 {
            chi.sample(&mut rng);
        }
    }
    #[test]
    #[should_panic]
    fn test_chi_squared_invalid_dof() {
        ChiSquared::new(-1.0).unwrap();
    }

    #[test]
    fn test_f() {
        let f = FisherF::new(2.0, 32.0).unwrap();
        let mut rng = crate::test::rng(204);
        for _ in 0..1000 {
            f.sample(&mut rng);
        }
    }

    #[test]
    fn test_t() {
        let t = StudentT::new(11.0).unwrap();
        let mut rng = crate::test::rng(205);
        for _ in 0..1000 {
            t.sample(&mut rng);
        }
    }

    #[test]
    fn test_beta() {
        let beta = Beta::new(1.0, 2.0).unwrap();
        let mut rng = crate::test::rng(201);
        for _ in 0..1000 {
            beta.sample(&mut rng);
        }
    }

    #[test]
    #[should_panic]
    fn test_beta_invalid_dof() {
        Beta::new(0., 0.).unwrap();
    }

    #[test]
    fn test_beta_small_param() {
        let beta = Beta::<f64>::new(1e-3, 1e-3).unwrap();
        let mut rng = crate::test::rng(206);
        for i in 0..1000 {
            assert!(!beta.sample(&mut rng).is_nan(), "failed at i={}", i);
        }
    }
}