rand_distr/gamma.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814
// Copyright 2018 Developers of the Rand project.
// Copyright 2013 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! The Gamma and derived distributions.
// We use the variable names from the published reference, therefore this
// warning is not helpful.
#![allow(clippy::many_single_char_names)]
use self::ChiSquaredRepr::*;
use self::GammaRepr::*;
use crate::normal::StandardNormal;
use num_traits::Float;
use crate::{Distribution, Exp, Exp1, Open01};
use rand::Rng;
use core::fmt;
#[cfg(feature = "serde1")]
use serde::{Serialize, Deserialize};
/// The Gamma distribution `Gamma(shape, scale)` distribution.
///
/// The density function of this distribution is
///
/// ```text
/// f(x) = x^(k - 1) * exp(-x / θ) / (Γ(k) * θ^k)
/// ```
///
/// where `Γ` is the Gamma function, `k` is the shape and `θ` is the
/// scale and both `k` and `θ` are strictly positive.
///
/// The algorithm used is that described by Marsaglia & Tsang 2000[^1],
/// falling back to directly sampling from an Exponential for `shape
/// == 1`, and using the boosting technique described in that paper for
/// `shape < 1`.
///
/// # Example
///
/// ```
/// use rand_distr::{Distribution, Gamma};
///
/// let gamma = Gamma::new(2.0, 5.0).unwrap();
/// let v = gamma.sample(&mut rand::thread_rng());
/// println!("{} is from a Gamma(2, 5) distribution", v);
/// ```
///
/// [^1]: George Marsaglia and Wai Wan Tsang. 2000. "A Simple Method for
/// Generating Gamma Variables" *ACM Trans. Math. Softw.* 26, 3
/// (September 2000), 363-372.
/// DOI:[10.1145/358407.358414](https://doi.acm.org/10.1145/358407.358414)
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Gamma<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
repr: GammaRepr<F>,
}
/// Error type returned from `Gamma::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum Error {
/// `shape <= 0` or `nan`.
ShapeTooSmall,
/// `scale <= 0` or `nan`.
ScaleTooSmall,
/// `1 / scale == 0`.
ScaleTooLarge,
}
impl fmt::Display for Error {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
Error::ShapeTooSmall => "shape is not positive in gamma distribution",
Error::ScaleTooSmall => "scale is not positive in gamma distribution",
Error::ScaleTooLarge => "scale is infinity in gamma distribution",
})
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for Error {}
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
enum GammaRepr<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
Large(GammaLargeShape<F>),
One(Exp<F>),
Small(GammaSmallShape<F>),
}
// These two helpers could be made public, but saving the
// match-on-Gamma-enum branch from using them directly (e.g. if one
// knows that the shape is always > 1) doesn't appear to be much
// faster.
/// Gamma distribution where the shape parameter is less than 1.
///
/// Note, samples from this require a compulsory floating-point `pow`
/// call, which makes it significantly slower than sampling from a
/// gamma distribution where the shape parameter is greater than or
/// equal to 1.
///
/// See `Gamma` for sampling from a Gamma distribution with general
/// shape parameters.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
struct GammaSmallShape<F>
where
F: Float,
StandardNormal: Distribution<F>,
Open01: Distribution<F>,
{
inv_shape: F,
large_shape: GammaLargeShape<F>,
}
/// Gamma distribution where the shape parameter is larger than 1.
///
/// See `Gamma` for sampling from a Gamma distribution with general
/// shape parameters.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
struct GammaLargeShape<F>
where
F: Float,
StandardNormal: Distribution<F>,
Open01: Distribution<F>,
{
scale: F,
c: F,
d: F,
}
impl<F> Gamma<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
/// Construct an object representing the `Gamma(shape, scale)`
/// distribution.
#[inline]
pub fn new(shape: F, scale: F) -> Result<Gamma<F>, Error> {
if !(shape > F::zero()) {
return Err(Error::ShapeTooSmall);
}
if !(scale > F::zero()) {
return Err(Error::ScaleTooSmall);
}
let repr = if shape == F::one() {
One(Exp::new(F::one() / scale).map_err(|_| Error::ScaleTooLarge)?)
} else if shape < F::one() {
Small(GammaSmallShape::new_raw(shape, scale))
} else {
Large(GammaLargeShape::new_raw(shape, scale))
};
Ok(Gamma { repr })
}
}
impl<F> GammaSmallShape<F>
where
F: Float,
StandardNormal: Distribution<F>,
Open01: Distribution<F>,
{
fn new_raw(shape: F, scale: F) -> GammaSmallShape<F> {
GammaSmallShape {
inv_shape: F::one() / shape,
large_shape: GammaLargeShape::new_raw(shape + F::one(), scale),
}
}
}
impl<F> GammaLargeShape<F>
where
F: Float,
StandardNormal: Distribution<F>,
Open01: Distribution<F>,
{
fn new_raw(shape: F, scale: F) -> GammaLargeShape<F> {
let d = shape - F::from(1. / 3.).unwrap();
GammaLargeShape {
scale,
c: F::one() / (F::from(9.).unwrap() * d).sqrt(),
d,
}
}
}
impl<F> Distribution<F> for Gamma<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
match self.repr {
Small(ref g) => g.sample(rng),
One(ref g) => g.sample(rng),
Large(ref g) => g.sample(rng),
}
}
}
impl<F> Distribution<F> for GammaSmallShape<F>
where
F: Float,
StandardNormal: Distribution<F>,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
let u: F = rng.sample(Open01);
self.large_shape.sample(rng) * u.powf(self.inv_shape)
}
}
impl<F> Distribution<F> for GammaLargeShape<F>
where
F: Float,
StandardNormal: Distribution<F>,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
// Marsaglia & Tsang method, 2000
loop {
let x: F = rng.sample(StandardNormal);
let v_cbrt = F::one() + self.c * x;
if v_cbrt <= F::zero() {
// a^3 <= 0 iff a <= 0
continue;
}
let v = v_cbrt * v_cbrt * v_cbrt;
let u: F = rng.sample(Open01);
let x_sqr = x * x;
if u < F::one() - F::from(0.0331).unwrap() * x_sqr * x_sqr
|| u.ln() < F::from(0.5).unwrap() * x_sqr + self.d * (F::one() - v + v.ln())
{
return self.d * v * self.scale;
}
}
}
}
/// The chi-squared distribution `χ²(k)`, where `k` is the degrees of
/// freedom.
///
/// For `k > 0` integral, this distribution is the sum of the squares
/// of `k` independent standard normal random variables. For other
/// `k`, this uses the equivalent characterisation
/// `χ²(k) = Gamma(k/2, 2)`.
///
/// # Example
///
/// ```
/// use rand_distr::{ChiSquared, Distribution};
///
/// let chi = ChiSquared::new(11.0).unwrap();
/// let v = chi.sample(&mut rand::thread_rng());
/// println!("{} is from a χ²(11) distribution", v)
/// ```
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct ChiSquared<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
repr: ChiSquaredRepr<F>,
}
/// Error type returned from `ChiSquared::new` and `StudentT::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum ChiSquaredError {
/// `0.5 * k <= 0` or `nan`.
DoFTooSmall,
}
impl fmt::Display for ChiSquaredError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
ChiSquaredError::DoFTooSmall => {
"degrees-of-freedom k is not positive in chi-squared distribution"
}
})
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for ChiSquaredError {}
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
enum ChiSquaredRepr<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
// k == 1, Gamma(alpha, ..) is particularly slow for alpha < 1,
// e.g. when alpha = 1/2 as it would be for this case, so special-
// casing and using the definition of N(0,1)^2 is faster.
DoFExactlyOne,
DoFAnythingElse(Gamma<F>),
}
impl<F> ChiSquared<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
/// Create a new chi-squared distribution with degrees-of-freedom
/// `k`.
pub fn new(k: F) -> Result<ChiSquared<F>, ChiSquaredError> {
let repr = if k == F::one() {
DoFExactlyOne
} else {
if !(F::from(0.5).unwrap() * k > F::zero()) {
return Err(ChiSquaredError::DoFTooSmall);
}
DoFAnythingElse(Gamma::new(F::from(0.5).unwrap() * k, F::from(2.0).unwrap()).unwrap())
};
Ok(ChiSquared { repr })
}
}
impl<F> Distribution<F> for ChiSquared<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
match self.repr {
DoFExactlyOne => {
// k == 1 => N(0,1)^2
let norm: F = rng.sample(StandardNormal);
norm * norm
}
DoFAnythingElse(ref g) => g.sample(rng),
}
}
}
/// The Fisher F distribution `F(m, n)`.
///
/// This distribution is equivalent to the ratio of two normalised
/// chi-squared distributions, that is, `F(m,n) = (χ²(m)/m) /
/// (χ²(n)/n)`.
///
/// # Example
///
/// ```
/// use rand_distr::{FisherF, Distribution};
///
/// let f = FisherF::new(2.0, 32.0).unwrap();
/// let v = f.sample(&mut rand::thread_rng());
/// println!("{} is from an F(2, 32) distribution", v)
/// ```
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct FisherF<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
numer: ChiSquared<F>,
denom: ChiSquared<F>,
// denom_dof / numer_dof so that this can just be a straight
// multiplication, rather than a division.
dof_ratio: F,
}
/// Error type returned from `FisherF::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum FisherFError {
/// `m <= 0` or `nan`.
MTooSmall,
/// `n <= 0` or `nan`.
NTooSmall,
}
impl fmt::Display for FisherFError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
FisherFError::MTooSmall => "m is not positive in Fisher F distribution",
FisherFError::NTooSmall => "n is not positive in Fisher F distribution",
})
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for FisherFError {}
impl<F> FisherF<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
/// Create a new `FisherF` distribution, with the given parameter.
pub fn new(m: F, n: F) -> Result<FisherF<F>, FisherFError> {
let zero = F::zero();
if !(m > zero) {
return Err(FisherFError::MTooSmall);
}
if !(n > zero) {
return Err(FisherFError::NTooSmall);
}
Ok(FisherF {
numer: ChiSquared::new(m).unwrap(),
denom: ChiSquared::new(n).unwrap(),
dof_ratio: n / m,
})
}
}
impl<F> Distribution<F> for FisherF<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
self.numer.sample(rng) / self.denom.sample(rng) * self.dof_ratio
}
}
/// The Student t distribution, `t(nu)`, where `nu` is the degrees of
/// freedom.
///
/// # Example
///
/// ```
/// use rand_distr::{StudentT, Distribution};
///
/// let t = StudentT::new(11.0).unwrap();
/// let v = t.sample(&mut rand::thread_rng());
/// println!("{} is from a t(11) distribution", v)
/// ```
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct StudentT<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
chi: ChiSquared<F>,
dof: F,
}
impl<F> StudentT<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
/// Create a new Student t distribution with `n` degrees of
/// freedom.
pub fn new(n: F) -> Result<StudentT<F>, ChiSquaredError> {
Ok(StudentT {
chi: ChiSquared::new(n)?,
dof: n,
})
}
}
impl<F> Distribution<F> for StudentT<F>
where
F: Float,
StandardNormal: Distribution<F>,
Exp1: Distribution<F>,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
let norm: F = rng.sample(StandardNormal);
norm * (self.dof / self.chi.sample(rng)).sqrt()
}
}
/// The algorithm used for sampling the Beta distribution.
///
/// Reference:
///
/// R. C. H. Cheng (1978).
/// Generating beta variates with nonintegral shape parameters.
/// Communications of the ACM 21, 317-322.
/// https://doi.org/10.1145/359460.359482
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
enum BetaAlgorithm<N> {
BB(BB<N>),
BC(BC<N>),
}
/// Algorithm BB for `min(alpha, beta) > 1`.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
struct BB<N> {
alpha: N,
beta: N,
gamma: N,
}
/// Algorithm BC for `min(alpha, beta) <= 1`.
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
struct BC<N> {
alpha: N,
beta: N,
delta: N,
kappa1: N,
kappa2: N,
}
/// The Beta distribution with shape parameters `alpha` and `beta`.
///
/// # Example
///
/// ```
/// use rand_distr::{Distribution, Beta};
///
/// let beta = Beta::new(2.0, 5.0).unwrap();
/// let v = beta.sample(&mut rand::thread_rng());
/// println!("{} is from a Beta(2, 5) distribution", v);
/// ```
#[derive(Clone, Copy, Debug)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub struct Beta<F>
where
F: Float,
Open01: Distribution<F>,
{
a: F, b: F, switched_params: bool,
algorithm: BetaAlgorithm<F>,
}
/// Error type returned from `Beta::new`.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
#[cfg_attr(feature = "serde1", derive(Serialize, Deserialize))]
pub enum BetaError {
/// `alpha <= 0` or `nan`.
AlphaTooSmall,
/// `beta <= 0` or `nan`.
BetaTooSmall,
}
impl fmt::Display for BetaError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str(match self {
BetaError::AlphaTooSmall => "alpha is not positive in beta distribution",
BetaError::BetaTooSmall => "beta is not positive in beta distribution",
})
}
}
#[cfg(feature = "std")]
#[cfg_attr(doc_cfg, doc(cfg(feature = "std")))]
impl std::error::Error for BetaError {}
impl<F> Beta<F>
where
F: Float,
Open01: Distribution<F>,
{
/// Construct an object representing the `Beta(alpha, beta)`
/// distribution.
pub fn new(alpha: F, beta: F) -> Result<Beta<F>, BetaError> {
if !(alpha > F::zero()) {
return Err(BetaError::AlphaTooSmall);
}
if !(beta > F::zero()) {
return Err(BetaError::BetaTooSmall);
}
// From now on, we use the notation from the reference,
// i.e. `alpha` and `beta` are renamed to `a0` and `b0`.
let (a0, b0) = (alpha, beta);
let (a, b, switched_params) = if a0 < b0 {
(a0, b0, false)
} else {
(b0, a0, true)
};
if a > F::one() {
// Algorithm BB
let alpha = a + b;
let beta = ((alpha - F::from(2.).unwrap())
/ (F::from(2.).unwrap()*a*b - alpha)).sqrt();
let gamma = a + F::one() / beta;
Ok(Beta {
a, b, switched_params,
algorithm: BetaAlgorithm::BB(BB {
alpha, beta, gamma,
})
})
} else {
// Algorithm BC
//
// Here `a` is the maximum instead of the minimum.
let (a, b, switched_params) = (b, a, !switched_params);
let alpha = a + b;
let beta = F::one() / b;
let delta = F::one() + a - b;
let kappa1 = delta
* (F::from(1. / 18. / 4.).unwrap() + F::from(3. / 18. / 4.).unwrap()*b)
/ (a*beta - F::from(14. / 18.).unwrap());
let kappa2 = F::from(0.25).unwrap()
+ (F::from(0.5).unwrap() + F::from(0.25).unwrap()/delta)*b;
Ok(Beta {
a, b, switched_params,
algorithm: BetaAlgorithm::BC(BC {
alpha, beta, delta, kappa1, kappa2,
})
})
}
}
}
impl<F> Distribution<F> for Beta<F>
where
F: Float,
Open01: Distribution<F>,
{
fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> F {
let mut w;
match self.algorithm {
BetaAlgorithm::BB(algo) => {
loop {
// 1.
let u1 = rng.sample(Open01);
let u2 = rng.sample(Open01);
let v = algo.beta * (u1 / (F::one() - u1)).ln();
w = self.a * v.exp();
let z = u1*u1 * u2;
let r = algo.gamma * v - F::from(4.).unwrap().ln();
let s = self.a + r - w;
// 2.
if s + F::one() + F::from(5.).unwrap().ln()
>= F::from(5.).unwrap() * z {
break;
}
// 3.
let t = z.ln();
if s >= t {
break;
}
// 4.
if !(r + algo.alpha * (algo.alpha / (self.b + w)).ln() < t) {
break;
}
}
},
BetaAlgorithm::BC(algo) => {
loop {
let z;
// 1.
let u1 = rng.sample(Open01);
let u2 = rng.sample(Open01);
if u1 < F::from(0.5).unwrap() {
// 2.
let y = u1 * u2;
z = u1 * y;
if F::from(0.25).unwrap() * u2 + z - y >= algo.kappa1 {
continue;
}
} else {
// 3.
z = u1 * u1 * u2;
if z <= F::from(0.25).unwrap() {
let v = algo.beta * (u1 / (F::one() - u1)).ln();
w = self.a * v.exp();
break;
}
// 4.
if z >= algo.kappa2 {
continue;
}
}
// 5.
let v = algo.beta * (u1 / (F::one() - u1)).ln();
w = self.a * v.exp();
if !(algo.alpha * ((algo.alpha / (self.b + w)).ln() + v)
- F::from(4.).unwrap().ln() < z.ln()) {
break;
};
}
},
};
// 5. for BB, 6. for BC
if !self.switched_params {
if w == F::infinity() {
// Assuming `b` is finite, for large `w`:
return F::one();
}
w / (self.b + w)
} else {
self.b / (self.b + w)
}
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_chi_squared_one() {
let chi = ChiSquared::new(1.0).unwrap();
let mut rng = crate::test::rng(201);
for _ in 0..1000 {
chi.sample(&mut rng);
}
}
#[test]
fn test_chi_squared_small() {
let chi = ChiSquared::new(0.5).unwrap();
let mut rng = crate::test::rng(202);
for _ in 0..1000 {
chi.sample(&mut rng);
}
}
#[test]
fn test_chi_squared_large() {
let chi = ChiSquared::new(30.0).unwrap();
let mut rng = crate::test::rng(203);
for _ in 0..1000 {
chi.sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_chi_squared_invalid_dof() {
ChiSquared::new(-1.0).unwrap();
}
#[test]
fn test_f() {
let f = FisherF::new(2.0, 32.0).unwrap();
let mut rng = crate::test::rng(204);
for _ in 0..1000 {
f.sample(&mut rng);
}
}
#[test]
fn test_t() {
let t = StudentT::new(11.0).unwrap();
let mut rng = crate::test::rng(205);
for _ in 0..1000 {
t.sample(&mut rng);
}
}
#[test]
fn test_beta() {
let beta = Beta::new(1.0, 2.0).unwrap();
let mut rng = crate::test::rng(201);
for _ in 0..1000 {
beta.sample(&mut rng);
}
}
#[test]
#[should_panic]
fn test_beta_invalid_dof() {
Beta::new(0., 0.).unwrap();
}
#[test]
fn test_beta_small_param() {
let beta = Beta::<f64>::new(1e-3, 1e-3).unwrap();
let mut rng = crate::test::rng(206);
for i in 0..1000 {
assert!(!beta.sample(&mut rng).is_nan(), "failed at i={}", i);
}
}
}