libm/math/expm1.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144
/* origin: FreeBSD /usr/src/lib/msun/src/s_expm1.c */
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
use core::f64;
const O_THRESHOLD: f64 = 7.09782712893383973096e+02; /* 0x40862E42, 0xFEFA39EF */
const LN2_HI: f64 = 6.93147180369123816490e-01; /* 0x3fe62e42, 0xfee00000 */
const LN2_LO: f64 = 1.90821492927058770002e-10; /* 0x3dea39ef, 0x35793c76 */
const INVLN2: f64 = 1.44269504088896338700e+00; /* 0x3ff71547, 0x652b82fe */
/* Scaled Q's: Qn_here = 2**n * Qn_above, for R(2*z) where z = hxs = x*x/2: */
const Q1: f64 = -3.33333333333331316428e-02; /* BFA11111 111110F4 */
const Q2: f64 = 1.58730158725481460165e-03; /* 3F5A01A0 19FE5585 */
const Q3: f64 = -7.93650757867487942473e-05; /* BF14CE19 9EAADBB7 */
const Q4: f64 = 4.00821782732936239552e-06; /* 3ED0CFCA 86E65239 */
const Q5: f64 = -2.01099218183624371326e-07; /* BE8AFDB7 6E09C32D */
/// Exponential, base *e*, of x-1 (f64)
///
/// Calculates the exponential of `x` and subtract 1, that is, *e* raised
/// to the power `x` minus 1 (where *e* is the base of the natural
/// system of logarithms, approximately 2.71828).
/// The result is accurate even for small values of `x`,
/// where using `exp(x)-1` would lose many significant digits.
#[cfg_attr(all(test, assert_no_panic), no_panic::no_panic)]
pub fn expm1(mut x: f64) -> f64 {
let hi: f64;
let lo: f64;
let k: i32;
let c: f64;
let mut t: f64;
let mut y: f64;
let mut ui = x.to_bits();
let hx = ((ui >> 32) & 0x7fffffff) as u32;
let sign = (ui >> 63) as i32;
/* filter out huge and non-finite argument */
if hx >= 0x4043687A {
/* if |x|>=56*ln2 */
if x.is_nan() {
return x;
}
if sign != 0 {
return -1.0;
}
if x > O_THRESHOLD {
x *= f64::from_bits(0x7fe0000000000000);
return x;
}
}
/* argument reduction */
if hx > 0x3fd62e42 {
/* if |x| > 0.5 ln2 */
if hx < 0x3FF0A2B2 {
/* and |x| < 1.5 ln2 */
if sign == 0 {
hi = x - LN2_HI;
lo = LN2_LO;
k = 1;
} else {
hi = x + LN2_HI;
lo = -LN2_LO;
k = -1;
}
} else {
k = (INVLN2 * x + if sign != 0 { -0.5 } else { 0.5 }) as i32;
t = k as f64;
hi = x - t * LN2_HI; /* t*ln2_hi is exact here */
lo = t * LN2_LO;
}
x = hi - lo;
c = (hi - x) - lo;
} else if hx < 0x3c900000 {
/* |x| < 2**-54, return x */
if hx < 0x00100000 {
force_eval!(x);
}
return x;
} else {
c = 0.0;
k = 0;
}
/* x is now in primary range */
let hfx = 0.5 * x;
let hxs = x * hfx;
let r1 = 1.0 + hxs * (Q1 + hxs * (Q2 + hxs * (Q3 + hxs * (Q4 + hxs * Q5))));
t = 3.0 - r1 * hfx;
let mut e = hxs * ((r1 - t) / (6.0 - x * t));
if k == 0 {
/* c is 0 */
return x - (x * e - hxs);
}
e = x * (e - c) - c;
e -= hxs;
/* exp(x) ~ 2^k (x_reduced - e + 1) */
if k == -1 {
return 0.5 * (x - e) - 0.5;
}
if k == 1 {
if x < -0.25 {
return -2.0 * (e - (x + 0.5));
}
return 1.0 + 2.0 * (x - e);
}
ui = ((0x3ff + k) as u64) << 52; /* 2^k */
let twopk = f64::from_bits(ui);
if k < 0 || k > 56 {
/* suffice to return exp(x)-1 */
y = x - e + 1.0;
if k == 1024 {
y = y * 2.0 * f64::from_bits(0x7fe0000000000000);
} else {
y = y * twopk;
}
return y - 1.0;
}
ui = ((0x3ff - k) as u64) << 52; /* 2^-k */
let uf = f64::from_bits(ui);
if k < 20 {
y = (x - e + (1.0 - uf)) * twopk;
} else {
y = (x - (e + uf) + 1.0) * twopk;
}
y
}
#[cfg(test)]
mod tests {
#[test]
fn sanity_check() {
assert_eq!(super::expm1(1.1), 2.0041660239464334);
}
}