half/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255
//! A crate that provides support for half-precision 16-bit floating point types.
//!
//! This crate provides the [`f16`] type, which is an implementation of the IEEE 754-2008 standard
//! [`binary16`] a.k.a "half" floating point type. This 16-bit floating point type is intended for
//! efficient storage where the full range and precision of a larger floating point value is not
//! required. This is especially useful for image storage formats.
//!
//! This crate also provides a [`bf16`] type, an alternative 16-bit floating point format. The
//! [`bfloat16`] format is a truncated IEEE 754 standard `binary32` float that preserves the
//! exponent to allow the same range as [`f32`] but with only 8 bits of precision (instead of 11
//! bits for [`f16`]). See the [`bf16`] type for details.
//!
//! Because [`f16`] and [`bf16`] are primarily for efficient storage, floating point operations such
//! as addition, multiplication, etc. are not always implemented by hardware. When hardware does not
//! support these operations, this crate emulates them by converting the value to
//! [`f32`] before performing the operation and then back afterward.
//!
//! Note that conversion from [`f32`]/[`f64`] to both [`f16`] and [`bf16`] are lossy operations, and
//! just as converting a [`f64`] to [`f32`] is lossy and does not have `Into`/`From` trait
//! implementations, so too do these smaller types not have those trait implementations either.
//! Instead, use `from_f32`/`from_f64` functions for the types in this crate. If you don't care
//! about lossy conversions and need trait conversions, use the appropriate [`num-traits`]
//! traits that are implemented.
//!
//! This crate also provides a [`slice`][mod@slice] module for zero-copy in-place conversions of
//! [`u16`] slices to both [`f16`] and [`bf16`], as well as efficient vectorized conversions of
//! larger buffers of floating point values to and from these half formats.
//!
//! The crate supports `#[no_std]` when the `std` cargo feature is not enabled, so can be used in
//! embedded environments without using the Rust [`std`] library. The `std` feature enables support
//! for the standard library and is enabled by default, see the [Cargo Features](#cargo-features)
//! section below.
//!
//! A [`prelude`] module is provided for easy importing of available utility traits.
//!
//! # Serialization
//!
//! When the `serde` feature is enabled, [`f16`] and [`bf16`] will be serialized as a newtype of
//! [`u16`] by default. In binary formats this is ideal, as it will generally use just two bytes for
//! storage. For string formats like JSON, however, this isn't as useful, and due to design
//! limitations of serde, it's not possible for the default `Serialize` implementation to support
//! different serialization for different formats.
//!
//! Instead, it's up to the containter type of the floats to control how it is serialized. This can
//! easily be controlled when using the derive macros using `#[serde(serialize_with="")]`
//! attributes. For both [`f16`] and [`bf16`] a `serialize_as_f32` and `serialize_as_string` are
//! provided for use with this attribute.
//!
//! Deserialization of both float types supports deserializing from the default serialization,
//! strings, and `f32`/`f64` values, so no additional work is required.
//!
//! # Hardware support
//!
//! Hardware support for these conversions and arithmetic will be used
//! whenever hardware support is available—either through instrinsics or targeted assembly—although
//! a nightly Rust toolchain may be required for some hardware. When hardware supports it the
//! functions and traits in the [`slice`][mod@slice] and [`vec`] modules will also use vectorized
//! SIMD intructions for increased efficiency.
//!
//! The following list details hardware support for floating point types in this crate. When using
//! `std` cargo feature, runtime CPU target detection will be used. To get the most performance
//! benefits, compile for specific CPU features which avoids the runtime overhead and works in a
//! `no_std` environment.
//!
//! | Architecture | CPU Target Feature | Notes |
//! | ------------ | ------------------ | ----- |
//! | `x86`/`x86_64` | `f16c` | This supports conversion to/from [`f16`] only (including vector SIMD) and does not support any [`bf16`] or arithmetic operations. |
//! | `aarch64` | `fp16` | This supports all operations on [`f16`] only. |
//!
//! # Cargo Features
//!
//! This crate supports a number of optional cargo features. None of these features are enabled by
//! default, even `std`.
//!
//! - **`alloc`** — Enable use of the [`alloc`] crate when not using the `std` library.
//!
//! Among other functions, this enables the [`vec`] module, which contains zero-copy
//! conversions for the [`Vec`] type. This allows fast conversion between raw `Vec<u16>` bits and
//! `Vec<f16>` or `Vec<bf16>` arrays, and vice versa.
//!
//! - **`std`** — Enable features that depend on the Rust [`std`] library. This also enables the
//! `alloc` feature automatically.
//!
//! Enabling the `std` feature enables runtime CPU feature detection of hardware support.
//! Without this feature detection, harware is only used when compiler target supports them.
//!
//! - **`serde`** — Adds support for the [`serde`] crate by implementing [`Serialize`] and
//! [`Deserialize`] traits for both [`f16`] and [`bf16`].
//!
//! - **`num-traits`** — Adds support for the [`num-traits`] crate by implementing [`ToPrimitive`],
//! [`FromPrimitive`], [`AsPrimitive`], [`Num`], [`Float`], [`FloatCore`], and [`Bounded`] traits
//! for both [`f16`] and [`bf16`].
//!
//! - **`bytemuck`** — Adds support for the [`bytemuck`] crate by implementing [`Zeroable`] and
//! [`Pod`] traits for both [`f16`] and [`bf16`].
//!
//! - **`zerocopy`** — Adds support for the [`zerocopy`] crate by implementing [`AsBytes`] and
//! [`FromBytes`] traits for both [`f16`] and [`bf16`].
//!
//! - **`rand_distr`** — Adds support for the [`rand_distr`] crate by implementing [`Distribution`]
//! and other traits for both [`f16`] and [`bf16`].
//!
//! - **`rkyv`** -- Enable zero-copy deserializtion with [`rkyv`] crate.
//!
//! [`alloc`]: https://doc.rust-lang.org/alloc/
//! [`std`]: https://doc.rust-lang.org/std/
//! [`binary16`]: https://en.wikipedia.org/wiki/Half-precision_floating-point_format
//! [`bfloat16`]: https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
//! [`serde`]: https://crates.io/crates/serde
//! [`bytemuck`]: https://crates.io/crates/bytemuck
//! [`num-traits`]: https://crates.io/crates/num-traits
//! [`zerocopy`]: https://crates.io/crates/zerocopy
//! [`rand_distr`]: https://crates.io/crates/rand_distr
//! [`rkyv`]: (https://crates.io/crates/rkyv)
#![cfg_attr(
feature = "alloc",
doc = "
[`vec`]: mod@vec"
)]
#![cfg_attr(
not(feature = "alloc"),
doc = "
[`vec`]: #
[`Vec`]: https://docs.rust-lang.org/stable/alloc/vec/struct.Vec.html"
)]
#![cfg_attr(
feature = "serde",
doc = "
[`Serialize`]: serde::Serialize
[`Deserialize`]: serde::Deserialize"
)]
#![cfg_attr(
not(feature = "serde"),
doc = "
[`Serialize`]: https://docs.rs/serde/*/serde/trait.Serialize.html
[`Deserialize`]: https://docs.rs/serde/*/serde/trait.Deserialize.html"
)]
#![cfg_attr(
feature = "num-traits",
doc = "
[`ToPrimitive`]: ::num_traits::ToPrimitive
[`FromPrimitive`]: ::num_traits::FromPrimitive
[`AsPrimitive`]: ::num_traits::AsPrimitive
[`Num`]: ::num_traits::Num
[`Float`]: ::num_traits::Float
[`FloatCore`]: ::num_traits::float::FloatCore
[`Bounded`]: ::num_traits::Bounded"
)]
#![cfg_attr(
not(feature = "num-traits"),
doc = "
[`ToPrimitive`]: https://docs.rs/num-traits/*/num_traits/cast/trait.ToPrimitive.html
[`FromPrimitive`]: https://docs.rs/num-traits/*/num_traits/cast/trait.FromPrimitive.html
[`AsPrimitive`]: https://docs.rs/num-traits/*/num_traits/cast/trait.AsPrimitive.html
[`Num`]: https://docs.rs/num-traits/*/num_traits/trait.Num.html
[`Float`]: https://docs.rs/num-traits/*/num_traits/float/trait.Float.html
[`FloatCore`]: https://docs.rs/num-traits/*/num_traits/float/trait.FloatCore.html
[`Bounded`]: https://docs.rs/num-traits/*/num_traits/bounds/trait.Bounded.html"
)]
#![cfg_attr(
feature = "bytemuck",
doc = "
[`Zeroable`]: bytemuck::Zeroable
[`Pod`]: bytemuck::Pod"
)]
#![cfg_attr(
not(feature = "bytemuck"),
doc = "
[`Zeroable`]: https://docs.rs/bytemuck/*/bytemuck/trait.Zeroable.html
[`Pod`]: https://docs.rs/bytemuck/*bytemuck/trait.Pod.html"
)]
#![cfg_attr(
feature = "zerocopy",
doc = "
[`AsBytes`]: zerocopy::AsBytes
[`FromBytes`]: zerocopy::FromBytes"
)]
#![cfg_attr(
not(feature = "zerocopy"),
doc = "
[`AsBytes`]: https://docs.rs/zerocopy/*/zerocopy/trait.AsBytes.html
[`FromBytes`]: https://docs.rs/zerocopy/*/zerocopy/trait.FromBytes.html"
)]
#![cfg_attr(
feature = "rand_distr",
doc = "
[`Distribution`]: rand::distributions::Distribution"
)]
#![cfg_attr(
not(feature = "rand_distr"),
doc = "
[`Distribution`]: https://docs.rs/rand/*/rand/distributions/trait.Distribution.html"
)]
#![warn(
missing_docs,
missing_copy_implementations,
trivial_numeric_casts,
future_incompatible
)]
#![cfg_attr(not(target_arch = "spirv"), warn(missing_debug_implementations))]
#![allow(clippy::verbose_bit_mask, clippy::cast_lossless)]
#![cfg_attr(not(feature = "std"), no_std)]
#![doc(html_root_url = "https://docs.rs/half/2.4.1")]
#![doc(test(attr(deny(warnings), allow(unused))))]
#![cfg_attr(docsrs, feature(doc_auto_cfg))]
#[cfg(feature = "alloc")]
extern crate alloc;
mod bfloat;
mod binary16;
mod leading_zeros;
#[cfg(feature = "num-traits")]
mod num_traits;
#[cfg(not(target_arch = "spirv"))]
pub mod slice;
#[cfg(feature = "alloc")]
pub mod vec;
pub use bfloat::bf16;
pub use binary16::f16;
#[cfg(feature = "rand_distr")]
mod rand_distr;
/// A collection of the most used items and traits in this crate for easy importing.
///
/// # Examples
///
/// ```rust
/// use half::prelude::*;
/// ```
pub mod prelude {
#[doc(no_inline)]
pub use crate::{bf16, f16};
#[cfg(not(target_arch = "spirv"))]
#[doc(no_inline)]
pub use crate::slice::{HalfBitsSliceExt, HalfFloatSliceExt};
#[cfg(feature = "alloc")]
#[doc(no_inline)]
pub use crate::vec::{HalfBitsVecExt, HalfFloatVecExt};
}
// Keep this module private to crate
mod private {
use crate::{bf16, f16};
pub trait SealedHalf {}
impl SealedHalf for f16 {}
impl SealedHalf for bf16 {}
}