rustix/
weak.rs

1// Implementation derived from `weak` in Rust's
2// library/std/src/sys/unix/weak.rs at revision
3// fd0cb0cdc21dd9c06025277d772108f8d42cb25f.
4//
5// Ideally we should update to a newer version which doesn't need `dlsym`,
6// however that depends on the `extern_weak` feature which is currently
7// unstable.
8
9#![cfg_attr(linux_raw, allow(unsafe_code))]
10
11//! Support for "weak linkage" to symbols on Unix
12//!
13//! Some I/O operations we do in libstd require newer versions of OSes but we
14//! need to maintain binary compatibility with older releases for now. In order
15//! to use the new functionality when available we use this module for
16//! detection.
17//!
18//! One option to use here is weak linkage, but that is unfortunately only
19//! really workable on Linux. Hence, use dlsym to get the symbol value at
20//! runtime. This is also done for compatibility with older versions of glibc,
21//! and to avoid creating dependencies on `GLIBC_PRIVATE` symbols. It assumes
22//! that we've been dynamically linked to the library the symbol comes from,
23//! but that is currently always the case for things like libpthread/libc.
24//!
25//! A long time ago this used weak linkage for the `__pthread_get_minstack`
26//! symbol, but that caused Debian to detect an unnecessarily strict versioned
27//! dependency on libc6 (#23628).
28
29// There are a variety of `#[cfg]`s controlling which targets are involved in
30// each instance of `weak!` and `syscall!`. Rather than trying to unify all of
31// that, we'll just allow that some unix targets don't use this module at all.
32#![allow(dead_code, unused_macros)]
33#![allow(clippy::doc_markdown)]
34
35use crate::ffi::CStr;
36use core::ffi::c_void;
37use core::ptr::null_mut;
38use core::sync::atomic::{self, AtomicPtr, Ordering};
39use core::{marker, mem};
40
41const NULL: *mut c_void = null_mut();
42const INVALID: *mut c_void = 1 as *mut c_void;
43
44macro_rules! weak {
45    ($vis:vis fn $name:ident($($t:ty),*) -> $ret:ty) => (
46        #[allow(non_upper_case_globals)]
47        $vis static $name: $crate::weak::Weak<unsafe extern fn($($t),*) -> $ret> =
48            $crate::weak::Weak::new(concat!(stringify!($name), '\0'));
49    )
50}
51
52pub(crate) struct Weak<F> {
53    name: &'static str,
54    addr: AtomicPtr<c_void>,
55    _marker: marker::PhantomData<F>,
56}
57
58impl<F> Weak<F> {
59    pub(crate) const fn new(name: &'static str) -> Self {
60        Self {
61            name,
62            addr: AtomicPtr::new(INVALID),
63            _marker: marker::PhantomData,
64        }
65    }
66
67    pub(crate) fn get(&self) -> Option<F> {
68        assert_eq!(mem::size_of::<F>(), mem::size_of::<usize>());
69        unsafe {
70            // Relaxed is fine here because we fence before reading through the
71            // pointer (see the comment below).
72            match self.addr.load(Ordering::Relaxed) {
73                INVALID => self.initialize(),
74                NULL => None,
75                addr => {
76                    let func = mem::transmute_copy::<*mut c_void, F>(&addr);
77                    // The caller is presumably going to read through this value
78                    // (by calling the function we've dlsymed). This means we'd
79                    // need to have loaded it with at least C11's consume
80                    // ordering in order to be guaranteed that the data we read
81                    // from the pointer isn't from before the pointer was
82                    // stored. Rust has no equivalent to memory_order_consume,
83                    // so we use an acquire fence (sorry, ARM).
84                    //
85                    // Now, in practice this likely isn't needed even on CPUs
86                    // where relaxed and consume mean different things. The
87                    // symbols we're loading are probably present (or not) at
88                    // init, and even if they aren't the runtime dynamic loader
89                    // is extremely likely have sufficient barriers internally
90                    // (possibly implicitly, for example the ones provided by
91                    // invoking `mprotect`).
92                    //
93                    // That said, none of that's *guaranteed*, and so we fence.
94                    atomic::fence(Ordering::Acquire);
95                    Some(func)
96                }
97            }
98        }
99    }
100
101    // Cold because it should only happen during first-time initialization.
102    #[cold]
103    unsafe fn initialize(&self) -> Option<F> {
104        let val = fetch(self.name);
105        // This synchronizes with the acquire fence in `get`.
106        self.addr.store(val, Ordering::Release);
107
108        match val {
109            NULL => None,
110            addr => Some(mem::transmute_copy::<*mut c_void, F>(&addr)),
111        }
112    }
113}
114
115// To avoid having the `linux_raw` backend depend on the libc crate, just
116// declare the few things we need in a module called `libc` so that `fetch`
117// uses it.
118#[cfg(linux_raw)]
119mod libc {
120    use core::ptr;
121    use linux_raw_sys::ctypes::{c_char, c_void};
122
123    #[cfg(all(target_os = "android", target_pointer_width = "32"))]
124    pub(super) const RTLD_DEFAULT: *mut c_void = -1isize as *mut c_void;
125    #[cfg(not(all(target_os = "android", target_pointer_width = "32")))]
126    pub(super) const RTLD_DEFAULT: *mut c_void = ptr::null_mut();
127
128    extern "C" {
129        pub(super) fn dlsym(handle: *mut c_void, symbol: *const c_char) -> *mut c_void;
130    }
131
132    #[test]
133    fn test_abi() {
134        assert_eq!(self::RTLD_DEFAULT, ::libc::RTLD_DEFAULT);
135    }
136}
137
138unsafe fn fetch(name: &str) -> *mut c_void {
139    let name = match CStr::from_bytes_with_nul(name.as_bytes()) {
140        Ok(c_str) => c_str,
141        Err(..) => return null_mut(),
142    };
143    libc::dlsym(libc::RTLD_DEFAULT, name.as_ptr().cast())
144}
145
146#[cfg(not(linux_kernel))]
147macro_rules! syscall {
148    (fn $name:ident($($arg_name:ident: $t:ty),*) via $_sys_name:ident -> $ret:ty) => (
149        unsafe fn $name($($arg_name: $t),*) -> $ret {
150            weak! { fn $name($($t),*) -> $ret }
151
152            if let Some(fun) = $name.get() {
153                fun($($arg_name),*)
154            } else {
155                libc_errno::set_errno(libc_errno::Errno(libc::ENOSYS));
156                -1
157            }
158        }
159    )
160}
161
162#[cfg(linux_kernel)]
163macro_rules! syscall {
164    (fn $name:ident($($arg_name:ident: $t:ty),*) via $sys_name:ident -> $ret:ty) => (
165        unsafe fn $name($($arg_name:$t),*) -> $ret {
166            // This looks like a hack, but `concat_idents` only accepts idents
167            // (not paths).
168            use libc::*;
169
170            #[allow(dead_code)]
171            trait AsSyscallArg {
172                type SyscallArgType;
173                fn into_syscall_arg(self) -> Self::SyscallArgType;
174            }
175
176            // Pass pointer types as pointers, to preserve provenance.
177            impl<T> AsSyscallArg for *mut T {
178                type SyscallArgType = *mut T;
179                fn into_syscall_arg(self) -> Self::SyscallArgType { self }
180            }
181            impl<T> AsSyscallArg for *const T {
182                type SyscallArgType = *const T;
183                fn into_syscall_arg(self) -> Self::SyscallArgType { self }
184            }
185
186            // Pass `BorrowedFd` values as the integer value.
187            impl AsSyscallArg for $crate::fd::BorrowedFd<'_> {
188                type SyscallArgType = ::libc::c_int;
189                fn into_syscall_arg(self) -> Self::SyscallArgType {
190                    $crate::fd::AsRawFd::as_raw_fd(&self) as _
191                }
192            }
193
194            // Coerce integer values into `c_long`.
195            impl AsSyscallArg for i8 {
196                type SyscallArgType = ::libc::c_int;
197                fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() }
198            }
199            impl AsSyscallArg for u8 {
200                type SyscallArgType = ::libc::c_int;
201                fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() }
202            }
203            impl AsSyscallArg for i16 {
204                type SyscallArgType = ::libc::c_int;
205                fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() }
206            }
207            impl AsSyscallArg for u16 {
208                type SyscallArgType = ::libc::c_int;
209                fn into_syscall_arg(self) -> Self::SyscallArgType { self.into() }
210            }
211            impl AsSyscallArg for i32 {
212                type SyscallArgType = ::libc::c_int;
213                fn into_syscall_arg(self) -> Self::SyscallArgType { self }
214            }
215            impl AsSyscallArg for u32 {
216                type SyscallArgType = ::libc::c_uint;
217                fn into_syscall_arg(self) -> Self::SyscallArgType { self }
218            }
219            impl AsSyscallArg for usize {
220                type SyscallArgType = ::libc::c_ulong;
221                fn into_syscall_arg(self) -> Self::SyscallArgType { self as _ }
222            }
223
224            // On 64-bit platforms, also coerce `i64` and `u64` since `c_long`
225            // is 64-bit and can hold those values.
226            #[cfg(target_pointer_width = "64")]
227            impl AsSyscallArg for i64 {
228                type SyscallArgType = ::libc::c_long;
229                fn into_syscall_arg(self) -> Self::SyscallArgType { self }
230            }
231            #[cfg(target_pointer_width = "64")]
232            impl AsSyscallArg for u64 {
233                type SyscallArgType = ::libc::c_ulong;
234                fn into_syscall_arg(self) -> Self::SyscallArgType { self }
235            }
236
237            // `concat_idents` is [unstable], so we take an extra `sys_name`
238            // parameter and have our users do the concat for us for now.
239            //
240            // [unstable]: https://github.com/rust-lang/rust/issues/29599
241            /*
242            syscall(
243                concat_idents!(SYS_, $name),
244                $($arg_name.into_syscall_arg()),*
245            ) as $ret
246            */
247
248            syscall($sys_name, $($arg_name.into_syscall_arg()),*) as $ret
249        }
250    )
251}
252
253macro_rules! weakcall {
254    ($vis:vis fn $name:ident($($arg_name:ident: $t:ty),*) -> $ret:ty) => (
255        $vis unsafe fn $name($($arg_name: $t),*) -> $ret {
256            weak! { fn $name($($t),*) -> $ret }
257
258            // Use a weak symbol from libc when possible, allowing `LD_PRELOAD`
259            // interposition, but if it's not found just fail.
260            if let Some(fun) = $name.get() {
261                fun($($arg_name),*)
262            } else {
263                libc_errno::set_errno(libc_errno::Errno(libc::ENOSYS));
264                -1
265            }
266        }
267    )
268}
269
270/// A combination of `weakcall` and `syscall`. Use the libc function if it's
271/// available, and fall back to `libc::syscall` otherwise.
272macro_rules! weak_or_syscall {
273    ($vis:vis fn $name:ident($($arg_name:ident: $t:ty),*) via $sys_name:ident -> $ret:ty) => (
274        $vis unsafe fn $name($($arg_name: $t),*) -> $ret {
275            weak! { fn $name($($t),*) -> $ret }
276
277            // Use a weak symbol from libc when possible, allowing `LD_PRELOAD`
278            // interposition, but if it's not found just fail.
279            if let Some(fun) = $name.get() {
280                fun($($arg_name),*)
281            } else {
282                syscall! { fn $name($($arg_name: $t),*) via $sys_name -> $ret }
283                $name($($arg_name),*)
284            }
285        }
286    )
287}