pub struct MutexGuard<'a, R: RawMutex, T: ?Sized> { /* private fields */ }
Expand description
An RAII implementation of a “scoped lock” of a mutex. When this structure is dropped (falls out of scope), the lock will be unlocked.
The data protected by the mutex can be accessed through this guard via its
Deref
and DerefMut
implementations.
Implementations§
Source§impl<'a, R: RawMutex + 'a, T: ?Sized + 'a> MutexGuard<'a, R, T>
impl<'a, R: RawMutex + 'a, T: ?Sized + 'a> MutexGuard<'a, R, T>
Sourcepub fn map<U: ?Sized, F>(s: Self, f: F) -> MappedMutexGuard<'a, R, U>
pub fn map<U: ?Sized, F>(s: Self, f: F) -> MappedMutexGuard<'a, R, U>
Makes a new MappedMutexGuard
for a component of the locked data.
This operation cannot fail as the MutexGuard
passed
in already locked the mutex.
This is an associated function that needs to be
used as MutexGuard::map(...)
. A method would interfere with methods of
the same name on the contents of the locked data.
Sourcepub fn try_map<U: ?Sized, F>(
s: Self,
f: F,
) -> Result<MappedMutexGuard<'a, R, U>, Self>
pub fn try_map<U: ?Sized, F>( s: Self, f: F, ) -> Result<MappedMutexGuard<'a, R, U>, Self>
Attempts to make a new MappedMutexGuard
for a component of the
locked data. The original guard is returned if the closure returns None
.
This operation cannot fail as the MutexGuard
passed
in already locked the mutex.
This is an associated function that needs to be
used as MutexGuard::try_map(...)
. A method would interfere with methods of
the same name on the contents of the locked data.
Source§impl<'a, R: RawMutexFair + 'a, T: ?Sized + 'a> MutexGuard<'a, R, T>
impl<'a, R: RawMutexFair + 'a, T: ?Sized + 'a> MutexGuard<'a, R, T>
Sourcepub fn unlock_fair(s: Self)
pub fn unlock_fair(s: Self)
Unlocks the mutex using a fair unlock protocol.
By default, mutexes are unfair and allow the current thread to re-lock the mutex before another has the chance to acquire the lock, even if that thread has been blocked on the mutex for a long time. This is the default because it allows much higher throughput as it avoids forcing a context switch on every mutex unlock. This can result in one thread acquiring a mutex many more times than other threads.
However in some cases it can be beneficial to ensure fairness by forcing
the lock to pass on to a waiting thread if there is one. This is done by
using this method instead of dropping the MutexGuard
normally.
Sourcepub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> Uwhere
F: FnOnce() -> U,
pub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> Uwhere
F: FnOnce() -> U,
Temporarily unlocks the mutex to execute the given function.
The mutex is unlocked using a fair unlock protocol.
This is safe because &mut
guarantees that there exist no other
references to the data protected by the mutex.
Trait Implementations§
impl<'a, R: RawMutex + Sync + 'a, T: ?Sized + Sync + 'a> Sync for MutexGuard<'a, R, T>
Auto Trait Implementations§
impl<'a, R, T> Freeze for MutexGuard<'a, R, T>where
T: ?Sized,
impl<'a, R, T> !RefUnwindSafe for MutexGuard<'a, R, T>
impl<'a, R, T> Send for MutexGuard<'a, R, T>
impl<'a, R, T> Unpin for MutexGuard<'a, R, T>
impl<'a, R, T> !UnwindSafe for MutexGuard<'a, R, T>
Blanket Implementations§
Source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
Source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
Layout§
Note: Unable to compute type layout, possibly due to this type having generic parameters. Layout can only be computed for concrete, fully-instantiated types.