curve25519_dalek

Module scalar

Source
Expand description

Arithmetic on scalars (integers mod the group order).

Both the Ristretto group and the Ed25519 basepoint have prime order \( \ell = 2^{252} + 27742317777372353535851937790883648493 \).

This code is intended to be useful with both the Ristretto group (where everything is done modulo \( \ell \)), and the X/Ed25519 setting, which mandates specific bit-twiddles that are not well-defined modulo \( \ell \).

All arithmetic on Scalars is done modulo \( \ell \).

§Constructing a scalar

To create a Scalar from a supposedly canonical encoding, use Scalar::from_canonical_bytes.

This function does input validation, ensuring that the input bytes are the canonical encoding of a Scalar. If they are, we’ll get Some(Scalar) in return:

use curve25519_dalek::scalar::Scalar;

let one_as_bytes: [u8; 32] = Scalar::ONE.to_bytes();
let a: Option<Scalar> = Scalar::from_canonical_bytes(one_as_bytes).into();

assert!(a.is_some());

However, if we give it bytes representing a scalar larger than \( \ell \) (in this case, \( \ell + 2 \)), we’ll get None back:

use curve25519_dalek::scalar::Scalar;

let l_plus_two_bytes: [u8; 32] = [
   0xef, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
   0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
   0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
   0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
];
let a: Option<Scalar> = Scalar::from_canonical_bytes(l_plus_two_bytes).into();

assert!(a.is_none());

Another way to create a Scalar is by reducing a \(256\)-bit integer mod \( \ell \), for which one may use the Scalar::from_bytes_mod_order method. In the case of the second example above, this would reduce the resultant scalar \( \mod \ell \), producing \( 2 \):

use curve25519_dalek::scalar::Scalar;

let l_plus_two_bytes: [u8; 32] = [
   0xef, 0xd3, 0xf5, 0x5c, 0x1a, 0x63, 0x12, 0x58,
   0xd6, 0x9c, 0xf7, 0xa2, 0xde, 0xf9, 0xde, 0x14,
   0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
   0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x10,
];
let a: Scalar = Scalar::from_bytes_mod_order(l_plus_two_bytes);

let two: Scalar = Scalar::ONE + Scalar::ONE;

assert!(a == two);

There is also a constructor that reduces a \(512\)-bit integer, Scalar::from_bytes_mod_order_wide.

To construct a Scalar as the hash of some input data, use Scalar::hash_from_bytes, which takes a buffer, or Scalar::from_hash, which allows an IUF API.

use sha2::{Digest, Sha512};
use curve25519_dalek::scalar::Scalar;

// Hashing a single byte slice
let a = Scalar::hash_from_bytes::<Sha512>(b"Abolish ICE");

// Streaming data into a hash object
let mut hasher = Sha512::default();
hasher.update(b"Abolish ");
hasher.update(b"ICE");
let a2 = Scalar::from_hash(hasher);

assert_eq!(a, a2);

See also Scalar::hash_from_bytes and Scalar::from_hash that reduces a \(512\)-bit integer, if the optional digest feature has been enabled.

Structs§

  • The Scalar struct holds an element of \(\mathbb Z / \ell\mathbb Z \).

Functions§

  • Clamps the given little-endian representation of a 32-byte integer. Clamping the value puts it in the range: